scholarly journals Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance

2015 ◽  
Vol 6 ◽  
Author(s):  
Anne-Laure Poher ◽  
Jordi Altirriba ◽  
Christelle Veyrat-Durebex ◽  
Françoise Rohner-Jeanrenaud
Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 316 ◽  
Author(s):  
Marianela Bastías-Pérez ◽  
Sebastián Zagmutt ◽  
M Carmen Soler-Vázquez ◽  
Dolors Serra ◽  
Paula Mera ◽  
...  

Obesity and associated metabolic diseases have become a priority area of study due to the exponential increase in their prevalence and the corresponding health and economic impact. In the last decade, brown adipose tissue has become an attractive target to treat obesity. However, environmental variables such as temperature and the dynamics of energy expenditure could influence brown adipose tissue activity. Currently, most metabolic studies are carried out at a room temperature of 21 °C, which is considered a thermoneutral zone for adult humans. However, in mice this chronic cold temperature triggers an increase in their adaptive thermogenesis. In this review, we aim to cover important aspects related to the adaptation of animals to room temperature, the influence of housing and temperature on the development of metabolic phenotypes in experimental mice and their translation to human physiology. Mice studies performed in chronic cold or thermoneutral conditions allow us to better understand underlying physiological mechanisms for successful, reproducible translation into humans in the fight against obesity and metabolic diseases.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


2020 ◽  
Author(s):  
Milena Monfort-Pires ◽  
Muuez U-Din ◽  
Guilherme A. Nogueira ◽  
Juliana de Almeida-Faria ◽  
Davi Sidarta-Oliveira ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrique Calvo ◽  
Noelia Keiran ◽  
Catalina Núñez-Roa ◽  
Elsa Maymó-Masip ◽  
Miriam Ejarque ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.


Metabolism ◽  
2021 ◽  
Vol 117 ◽  
pp. 154709 ◽  
Author(s):  
Tim Hollstein ◽  
Karyne Vinales ◽  
Kong Y. Chen ◽  
Aaron M. Cypess ◽  
Alessio Basolo ◽  
...  

2019 ◽  
Vol 33 (5) ◽  
pp. 1394-1403 ◽  
Author(s):  
Rafael Calixto Bortolin ◽  
Amanda Rodrigues Vargas ◽  
Vitor Ramos ◽  
Juciano Gasparotto ◽  
Paloma Rodrigues Chaves ◽  
...  

Pain ◽  
2016 ◽  
Vol 157 (11) ◽  
pp. 2561-2570 ◽  
Author(s):  
Elizabeth M. Goudie-DeAngelis ◽  
Ramy E. Abdelhamid ◽  
Myra G. Nunez ◽  
Casey L. Kissel ◽  
Katalin J. Kovács ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document