scholarly journals Development and Growth of the Avian Pectoralis Major (Breast) Muscle: Function of Syndecan-4 and Glypican-1 in Adult Myoblast Proliferation and Differentiation

2017 ◽  
Vol 8 ◽  
Author(s):  
Sandra G. Velleman ◽  
Yan Song
Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 423
Author(s):  
Genxi Zhang ◽  
Mingliang He ◽  
Pengfei Wu ◽  
Xinchao Zhang ◽  
Kaizhi Zhou ◽  
...  

microRNAs play an important role in the growth and development of chicken embryos, including the regulation of skeletal muscle genesis, myoblast proliferation, differentiation, and apoptosis. Our previous RNA-seq studies showed that microRNA-27b-3p (miR-27b-3p) might play an important role in regulating the proliferation and differentiation of chicken primary myoblasts (CPMs). However, the mechanism of miR-27b-3p regulating the proliferation and differentiation of CPMs is still unclear. In this study, the results showed that miR-27b-3p significantly promoted the proliferation of CPMs and inhibited the differentiation of CPMs. Then, myostatin (MSTN) was confirmed to be the target gene of miR-27b-3p by double luciferase reporter assay, RT-qPCR, and Western blot. By overexpressing and interfering with MSTN expression in CPMs, the results showed that overexpression of MSTN significantly inhibited the proliferation and differentiation of CPMs. In contrast, interference of MSTN expression had the opposite effect. This study showed that miR-27b-3p could promote the proliferation of CPMs by targeting MSTN. Interestingly, both miR-27b-3p and MSTN can inhibit the differentiation of CPMs. These results provide a theoretical basis for further understanding the function of miR-27b-3p in chicken and revealing its regulation mechanism on chicken muscle growth.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Xuemei Shen ◽  
Jia Tang ◽  
Rui Jiang ◽  
Xiaogang Wang ◽  
Zhaoxin Yang ◽  
...  

AbstractMany novel non-coding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), are involved in various physiological and pathological processes. The PI3K/AKT signaling pathway is important for its role in regulating skeletal muscle development. In this study, molecular and biochemical assays were used to confirm the role of miRNA-145 (miR-145) in myoblast proliferation and apoptosis. Based on sequencing data and bioinformatics analysis, we identified a new circRILPL1, which acts as a sponge for miR-145. The interactions between circRILPL1 and miR-145 were examined by bioinformatics, a luciferase assay, and RNA immunoprecipitation. Mechanistically, knockdown or exogenous expression of circRILPL1 in the primary myoblasts was performed to prove the functional significance of circRILPL1. We investigated the inhibitory effect of miR-145 on myoblast proliferation by targeting IGF1R to regulate the PI3K/AKT signaling pathway. A novel circRILPL1 was identified that could sponge miR-145 and is related to AKT activation. In addition, circRILPL1 was positively correlated with muscle proliferation and differentiation in vitro and could inhibit cell apoptosis. The newly identified circRILPL1 functions as a miR-145 sponge to regulate the IGF1R gene and rescue the inhibitory effect of miR-145 on the PI3K/AKT signaling pathway, thereby promoting myoblast growth.


2018 ◽  
Vol 9 ◽  
Author(s):  
Zhijun Wang ◽  
Hongjia Ouyang ◽  
Xiaolan Chen ◽  
Jiao Yu ◽  
Bahareldin A. Abdalla ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Zhang ◽  
Jing Cao ◽  
Ailian Geng ◽  
Haihong Wang ◽  
Qin Chu ◽  
...  

Chronological age is one of the important factors influencing muscle development and meat quality in chickens. To evaluate the protein expression profiles during skeletal muscle development, we performed a tandem mass tag (TMT)-based quantitative proteomic strategy in pectoralis major (breast muscle) of Beijing-You chicken (BYC) at the chronological age of 90, 120, and 150 days. Each chronological age contained 3 pooling samples or 15 birds (five birds per pooling sample). A total of 1,413 proteins were identified in chicken breast muscle with FDR < 1% and 197 of them were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05). There were 110 up- and 71 down-regulated proteins in 120 d vs 90 d group, 13 up- and 10 down-regulated proteins in 150 d vs 120 d group. The proteomic profiles of BYC at 120 d were very similar to those at 150 d and highly different from those at 90 d, suggesting that 120 d might be an important chronological age for BYC. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these differentially expressed proteins were mainly involved in the pathway of glycolysis/gluconeogenesis, adrenergic signaling in cardiomyocytes, focal adhesion, oocyte meiosis and phagosome. Furthermore, some DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. In summary, these results provided some candidate protein-coding genes for further functional validation and contribute to a comprehensive understanding of muscle development and age-dependent meat quality regulation by proteins in chickens.


2018 ◽  
Vol 97 (4) ◽  
pp. 257-268 ◽  
Author(s):  
Han Wang ◽  
Qian Zhang ◽  
BinBin Wang ◽  
WangJun Wu ◽  
Julong Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document