scholarly journals Pectoralis Major (Breast) Muscle Extracellular Matrix Fibrillar Collagen Modifications Associated With the Wooden Breast Fibrotic Myopathy in Broilers

2020 ◽  
Vol 11 ◽  
Author(s):  
Sandra G. Velleman
2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Zhang ◽  
Jing Cao ◽  
Ailian Geng ◽  
Haihong Wang ◽  
Qin Chu ◽  
...  

Chronological age is one of the important factors influencing muscle development and meat quality in chickens. To evaluate the protein expression profiles during skeletal muscle development, we performed a tandem mass tag (TMT)-based quantitative proteomic strategy in pectoralis major (breast muscle) of Beijing-You chicken (BYC) at the chronological age of 90, 120, and 150 days. Each chronological age contained 3 pooling samples or 15 birds (five birds per pooling sample). A total of 1,413 proteins were identified in chicken breast muscle with FDR < 1% and 197 of them were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05). There were 110 up- and 71 down-regulated proteins in 120 d vs 90 d group, 13 up- and 10 down-regulated proteins in 150 d vs 120 d group. The proteomic profiles of BYC at 120 d were very similar to those at 150 d and highly different from those at 90 d, suggesting that 120 d might be an important chronological age for BYC. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these differentially expressed proteins were mainly involved in the pathway of glycolysis/gluconeogenesis, adrenergic signaling in cardiomyocytes, focal adhesion, oocyte meiosis and phagosome. Furthermore, some DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. In summary, these results provided some candidate protein-coding genes for further functional validation and contribute to a comprehensive understanding of muscle development and age-dependent meat quality regulation by proteins in chickens.


2017 ◽  
Vol 96 (4) ◽  
pp. 886-893 ◽  
Author(s):  
Karen Vignale ◽  
Justina V. Caldas ◽  
Judy A. England ◽  
Nirun Boonsinchai ◽  
Andrew Magnuson ◽  
...  

2017 ◽  
Vol 96 (9) ◽  
pp. 3465-3472 ◽  
Author(s):  
Francesca Soglia ◽  
Jingxian Gao ◽  
Maurizio Mazzoni ◽  
Eero Puolanne ◽  
Claudio Cavani ◽  
...  

2009 ◽  
Vol 285 (10) ◽  
pp. 7067-7078 ◽  
Author(s):  
Lauren Van Duyn Graham ◽  
Mariya T. Sweetwyne ◽  
Manuel A. Pallero ◽  
Joanne E. Murphy-Ullrich

2019 ◽  
Author(s):  
Muzamil Majid Khan ◽  
Daniel Poeckel ◽  
Aliaksandr Halavatyi ◽  
Frank Stein ◽  
Johanna Vappiani ◽  
...  

AbstractFibrosis can affect any organ resulting in the loss of tissue architecture and function with often life-threatening consequences. Pathologically, fibrosis is characterised by expansion of connective tissue due to excessive deposition of extracellular matrix proteins (ECM), including the fibrillar forms of collagen. A significant hurdle for discovering cures for fibrosis is the lack of suitable models and techniques to quantify mature collagen deposition in tissues. Here we have extensively characterized an ex-vivo cultured human lung derived, precision-cut lung slices model (hPCLS) using live fluorescence light microscopy as well as mass spectrometry-based techniques to obtain a proteomic and metabolomic fingerprint. Using an integrated approach of multiple readouts such as quantitative label-free Second Harmonic Generation (SHG) imaging to measure fibrillar collagen in the extracellular matrix and ELISA-based methods to measure soluble ECM biomarkers, we investigated TGFbeta1-mediated pro-fibrotic signalling in hPCLS. We demonstrate that hPCLS are viable and metabolically active with mesenchymal, epithelial, endothelial, and immune cells surviving for at least two weeks in ex vivo culture. Analysis of hPCLS-conditioned supernatants showed strong induction of ECM synthesis proteins P1NP and fibronectin upon TGFb stimulation. Importantly, this effect translated into an increased deposition of fibrillar collagen in ECM of cultured hPCLS as measured by a novel quantitative SHG-based imaging method only following addition of a metalloproteinase inhibitor (GM6001). Together the data show that an integrated approach of measuring soluble pro-fibrotic markers and quantitative SHG-based analysis of fibrillar collagen is a valuable tool for studying pro-fibrotic signalling and testing anti-fibrotic agents.


Author(s):  
Juniper A. Lake ◽  
Michael B. Papah ◽  
Behnam Abasht

Wooden breast is a muscle disorder affecting modern commercial broiler chickens that causes a palpably firm pectoralis major muscle and severe reduction in meat quality. Most studies have focused on advanced stages of wooden breast apparent at market age, resulting in limited insights into the etiology and early pathogenesis of the myopathy. Therefore, the objective of this study was to identify early molecular signals in the wooden breast transcriptional cascade by performing gene expression analysis on the pectoralis major muscle of two-week-old birds that may later exhibit the wooden breast phenotype by market age at 7 weeks. Biopsy samples of the left pectoralis major muscle were collected from a subset of 101 birds randomly selected from a total of 302 birds at 14 days of age, after which all birds were raised to 7 weeks of age for scoring of wooden breast. RNA sequencing was performed on 5 unaffected and 8 affected female chicken samples, selected based on wooden breast scores (0 to 4) assigned at necropsy where affected birds had scores of 2 or 3 (mildly or moderately affected) while unaffected birds had scores of 0 (no apparent gross lesions). Differential expression analysis identified 60 genes found to be significant at an FDR-adjusted p value of 0.05. Of these, 26 were previously demonstrated to exhibit altered expression or genetic polymorphisms related to glucose tolerance or diabetes mellitus in mammals. Additionally, 9 genes have functions directly related to lipid metabolism and 11 genes are associated with adiposity traits such as intramuscular fat and body mass index. This study suggests that wooden breast disease is first and foremost a metabolic disorder characterized primarily by ectopic lipid accumulation in the pectoralis major.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 746 ◽  
Author(s):  
Juniper A. Lake ◽  
Michael B. Papah ◽  
Behnam Abasht

Wooden breast is a muscle disorder affecting modern commercial broiler chickens that causes a palpably firm pectoralis major muscle and severe reduction in meat quality. Most studies have focused on advanced stages of wooden breast apparent at market age, resulting in limited insights into the etiology and early pathogenesis of the myopathy. Therefore, the objective of this study was to identify early molecular signals in the wooden breast transcriptional cascade by performing gene expression analysis on the pectoralis major muscle of two-week-old birds that may later exhibit the wooden breast phenotype by market age at 7 weeks. Biopsy samples of the left pectoralis major muscle were collected from 101 birds at 14 days of age. Birds were subsequently raised to 7 weeks of age to allow sample selection based on the wooden breast phenotype at market age. RNA-sequencing was performed on 5 unaffected and 8 affected female chicken samples, selected based on wooden breast scores (0 to 4) assigned at necropsy where affected birds had scores of 2 or 3 (mildly or moderately affected) while unaffected birds had scores of 0 (no apparent gross lesions). Differential expression analysis identified 60 genes found to be significant at an FDR-adjusted p-value of 0.05. Of these, 26 were previously demonstrated to exhibit altered expression or genetic polymorphisms related to glucose tolerance or diabetes mellitus in mammals. Additionally, 9 genes have functions directly related to lipid metabolism and 11 genes are associated with adiposity traits such as intramuscular fat and body mass index. This study suggests that wooden breast disease is first and foremost a metabolic disorder characterized primarily by ectopic lipid accumulation in the pectoralis major.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1315
Author(s):  
Dariusz Kokoszyński ◽  
Kamil Stęczny ◽  
Joanna Żochowska-Kujawska ◽  
Małgorzata Sobczak ◽  
Marek Kotowicz ◽  
...  

Pigeons have been the subject of research in the past, but the knowledge gained is incomplete and must be extended. The aim of the study was to provide information about differences in carcass weight and measurements, carcass composition, proximate chemical composition, acidity, electrical conductivity, color attributes, the texture, rheological properties and microstructure of the meat, and some biometric characteristics of the digestive system in carrier and King pigeons, and also to determine if the two compared breeds meet the expectations of pigeon meat consumers to the same extent. The study involved 40 carcasses from carrier pigeons and King pigeons after three reproductive seasons. The chemical composition was determined by near-infrared transmission (NIT) spectroscopy, color coordinates according to CIELab, the texture according to Texture Profile Analysis (TPA) and Warner–Bratzler (WB) tests, and the rheological properties of meat according to the relaxation test. The compared pigeon groups differed significantly (p < 0.05) in carcass weight and measurements, carcass composition (except breast muscle percentage), chemical composition (except leg muscle collagen content) and electrical conductivity, lightness (L*), yellowness (b*), chroma (C*) and hue angle (h*), textural characteristics (except cohesiveness and Warner‒Bratzler shear force), rheological properties, microstructure of the pectoralis major muscle, as well as the total length of intestine and its segments, duodenal diameter, weight of proventriculus, gizzard, liver, heart, and spleen. The sex of the birds had a significant (p < 0.05) effect on the carcass weight, chest circumference, carcass neck percentage, breast muscle collagen content, and caeca length. The genotype by sex interaction was significant (p < 0.05) for fat content, collagen content, hardness, sum of elastic moduli and sum of viscous moduli of the pectoralis major muscle, protein and collagen content of leg muscles, duodenal and caecal length, jejunal and ileal diameter, and spleen weight. The obtained results show a significant effect of genetic origin and sex on the nutritive and technological value of the meat, and on the digestive system development of the pigeons.


Sign in / Sign up

Export Citation Format

Share Document