scholarly journals Extracellular Matrix Membrane Induces Cementoblastic/Osteogenic Properties of Human Periodontal Ligament Stem Cells

2018 ◽  
Vol 9 ◽  
Author(s):  
Yuanyuan Wang ◽  
Silvana Papagerakis ◽  
Denver Faulk ◽  
Stephen F. Badylak ◽  
Yuming Zhao ◽  
...  
Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 931
Author(s):  
Guya Diletta Marconi ◽  
Luigia Fonticoli ◽  
Ylenia Della Della Rocca ◽  
Thangavelu Soundara Rajan ◽  
Adriano Piattelli ◽  
...  

The major challenge for dentistry is to provide the patient an oral rehabilitation to maintain healthy bone conditions in order to reduce the time for loading protocols. Advancement in implant surface design is necessary to favour and promote the osseointegration process. The surface features of titanium dental implant can promote a relevant influence on the morphology and differentiation ability of mesenchymal stem cells, induction of the osteoblastic genes expression and the release of extracellular matrix (ECM) components. The present study aimed at evaluating the in vitro effects of two different dental implants with titanium surfaces, TEST and CTRL, to culture the human periodontal ligament stem cells (hPDLSCs). Expression of ECM components such as Vimentin, Fibronectin, N-cadherin, Laminin, Focal Adhesion Kinase (FAK) and Integrin beta-1 (ITGB1), and the osteogenic related markers, as runt related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), were investigated. Human PDLSCs cultured on the TEST implant surface demonstrated a better cell adhesion capability as observed by Scanning Electron Microscopy (SEM) and immunofluorescence analysis. Moreover, immunofluorescence and Western blot experiments showed an over expression of Fibronectin, Laminin, N-cadherin and RUNX2 in hPDLSCs seeded on TEST implant surface. The gene expression study by RT-PCR validated the results obtained in protein assays and exhibited the expression of RUNX2, ALP, Vimentin (VIM), Fibronectin (FN1), N-cadherin (CDH2), Laminin (LAMB1), FAK and ITGB1 in hPDLSCs seeded on TEST surface compared to the CTRL dental implant surface. Understanding the mechanisms of ECM components release and its regulation are essential for developing novel strategies in tissue engineering and regenerative medicine. Our results demonstrated that the impact of treated surfaces of titanium dental implants might increase and accelerate the ECM apposition and provide the starting point to initiate the osseointegration process.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xue Xiong ◽  
Xiao Yang ◽  
Hongwei Dai ◽  
Gang Feng ◽  
Yuanyuan Zhang ◽  
...  

Abstract Background Human periodontal ligament stem cells (hPDLSCs) are one of the most promising types of seed cells in periodontal tissue regeneration. Suitable biomaterials are additional essential components that must cooperate with seed cells for in vivo expansion or in vitro implantation. Extracellular matrix (ECM) derived from mesenchymal stem cells (MSCs) was recently reported to be a promising substrate with which to culture MSCs that could be applied in biomaterial scaffolds or bioink. Human urine-derived stem cells (hUSCs) have several advantages; their collection is non-invasive and easy, and hUSCs are low in cost, potentially making them a suitable and efficient source of ECM. The purpose of this study was to characterize the biological properties of ECM derived from hUSCs (UECM) and evaluate the effects of UECM on hPDLSCs. Methods hPDLSCs grown on ECM derived from hPDLSCs (PECM) and fibronectin-coated tissue culture plastic (TCP) served as control groups. Both hUSCs and hPDLSCs were seeded on TCP and stimulated to produce ECM. After 8 days of stimulation, the samples were decellularized, leaving only ECM. Then, hPDLSCs were seeded onto UECM-, PECM-, and fibronectin-coated TCP and untreated TCP. Results UECM consists of dense bundles of fibers which contain abundant fibronectin. Both UECM and PECM promoted hPDLSC proliferation, attachment, spreading, and differentiation. Between UECM and PECM, UECM enhanced proliferation, osteogenesis, and angiogenesis to a greater extent. Though fibronectin appeared to be the abundant component of UECM, its performance was inferior to that of UECM. Conclusions Our study provides an original perspective on different cell-specific ECMs and suggests UECM as a suitable biomaterial in which to culture hPDLSCs as UECM enhances their biological functions.


2021 ◽  
Vol 11 (6) ◽  
pp. 528
Author(s):  
Spoorthi Ravi Banavar ◽  
Swati Yeshwant Rawal ◽  
Shaju Jacob Pulikkotil ◽  
Umer Daood ◽  
Ian C. Paterson ◽  
...  

Background: The effects of lipopolysaccharide (LPS) on cell proliferation and osteogenic potential (OP) of MSCs have been frequently studied. Objective: to compare the effects of LPS on periodontal-ligament-derived mesenchymal stem cells (PDLSCs) in monolayer and 3D culture. Methods: The PDLSCs were colorimetrically assessed for proliferation and osteogenic potential (OP) after LPS treatment. The 3D cells were manually prepared by scratching and allowing them to clump up. The clumps (C-MSCs) were treated with LPS and assessed for Adenosine triphosphate (ATP) and OP. Raman spectroscopy was used to analyze calcium salts, DNA, and proline/hydroxyproline. Multiplexed ELISA was performed to assess LPS induced local inflammation. Results: The proliferation of PDLSCs decreased with LPS. On Day 28, LPS-treated cells showed a reduction in their OP. C-MSCs with LPS did not show a decrease in ATP production. Principal bands identified in Raman analysis were the P–O bond at 960 cm−1 of the mineral component, 785 cm−1, and 855 cm−1 showing qualitative changes in OP, proliferation, and proline/hydroxyproline content, respectively. ELISA confirmed increased levels of IL-6 and IL-8 but with the absence of TNF-α and IL-1β secretion. Conclusions: These observations demonstrate that C-MSCs are more resistant to the effects of LPS than cells in monolayer cell culture. Though LPS stimulation of C-MSCs creates an early pro-inflammatory milieu by secreting IL-6 and IL-8, PDLSCs possess inactivated TNF promoter and an ineffective caspase-1 activating process.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Qian Li ◽  
Xiwen Sun ◽  
Yunyi Tang ◽  
Yanan Qu ◽  
Yanheng Zhou ◽  
...  

Abstract Despite the ubiquitous mechanical cues at both spatial and temporal dimensions, cell identities and functions are largely immune to the everchanging mechanical stimuli. To understand the molecular basis of this epigenetic stability, we interrogated compressive force-elicited transcriptomic changes in mesenchymal stem cells purified from human periodontal ligament (PDLSCs), and identified H3K27me3 and E2F signatures populated within upregulated and weakly downregulated genes, respectively. Consistently, expressions of several E2F family transcription factors and EZH2, as core methyltransferase for H3K27me3, decreased in response to mechanical stress, which were attributed to force-induced redistribution of RB from nucleoplasm to lamina. Importantly, although epigenomic analysis on H3K27me3 landscape only demonstrated correlating changes at one group of mechanoresponsive genes, we observed a genome-wide destabilization of super-enhancers along with aberrant EZH2 retention. These super-enhancers were tightly bounded by H3K27me3 domain on one side and exhibited attenuating H3K27ac deposition and flattening H3K27ac peaks along with compensated EZH2 expression after force exposure, analogous to increased H3K27ac entropy or decreased H3K27ac polarization. Interference of force-induced EZH2 reduction could drive actin filaments dependent spatial overlap between EZH2 and super-enhancers and functionally compromise the multipotency of PDLSC following mechanical stress. These findings together unveil a specific contribution of EZH2 reduction for the maintenance of super-enhancer stability and cell identity in mechanoresponse.


2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Melissa D. Mercado-Rubio ◽  
Erick Pérez-Argueta ◽  
Alejandro Zepeda-Pedreguera ◽  
Fernando J. Aguilar-Ayala ◽  
Ricardo Peñaloza-Cuevas ◽  
...  

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.


Sign in / Sign up

Export Citation Format

Share Document