scholarly journals Comparative Transcriptome and Proteome Analysis of Heat Acclimation in Predatory Mite Neoseiulus barkeri

2020 ◽  
Vol 11 ◽  
Author(s):  
Chuan Bei Tian ◽  
Ya Ying Li ◽  
Ji Huang ◽  
Wen Qiang Chu ◽  
Zi Ying Wang ◽  
...  
2018 ◽  
Vol 23 (11) ◽  
pp. 2173
Author(s):  
Su-Qin Shang ◽  
Yao-Nian Chen ◽  
Ying-Lu Bai

The two-spotted spider mite, Tetranychus urticae, is an important mite pest worldwide. It often leads to reduced crop yields or poor marketability of the produce and has already developed resistance to many acaricides. In this study, the pathogenicity of the entomopathogenic fungus (EPF), Acremonium hansfordii, to T. urticae and its side effects on the predatory mite Neoseiulus barkeri were compared. The toxicity of A. hansfordii was evaluated on T. urticae at 1.0×104, 1.0×106, 1.0×108 conidia/mL concentrations and predatory mite N. barkeri at 1.0×108 conidia/mL under experimental conditions at 25±1°C, 75±5% RH and 16L: 8D photoperiod. The effects of EPF on the development of the F0 and F1 generation of predatory mites were also assessed at 1.0×108 conidia/mL concentration. The results showed that the corrected mortality of T. urticae at three tested concentrations were 36.67%, 53.67% and 66.33% within 11d, and the median lethal time were 14.39 d, 9.84d and 7.99d, respectively. The corrected mortality of N. barkeri was only 3.9% after 11d at 1×108 conidia/mL concentration. Some hyphae of A. hansfordii were detected on the surface of treated T. urticae but not on N. barkeri body after 7d. After N. barkeri females were treated with 1.0×108 conidia/mL, the preoviposition period of the F0 generation was prolonged 1.56 times and the other life history parameters have no significant differences; similar patterns were also shown in the F1 generation. A. hansfordii showed strong pathogenicity against T. urticae but did not significantly adversely influence N. barkeri. Therefore, the combination of A. hansfordii and N. barkeri has the potential to be used for the control of T. urticae in the future. 


2016 ◽  
Vol 17 (6) ◽  
pp. 704 ◽  
Author(s):  
Lin Cong ◽  
Fei Chen ◽  
Shijiang Yu ◽  
Lili Ding ◽  
Juan Yang ◽  
...  

2020 ◽  
Vol 25 (6) ◽  
pp. 1147-1157
Author(s):  
Rosenya Michely Cintra Filgueiras ◽  
Jairo De Almeida Mendes ◽  
Francisco Wesller Batista Da Silva ◽  
Eduardo Pereira De Sousa Neto ◽  
José Wagner Da Silva Melo

Raoiella indica Hirst (Acari: Tenuipalpidae) is a polyphagous pest widely dispersed worldwide and a particular threat to crops from the Arecaceae family. Control measures are still being evaluated in recently invaded countries. A possible control strategy for this pest is the use of predatory mites. A recent study has suggested Neoseiulus barkeri Hughes (Acari: Phytoseiidae) as a potential biological control agent of R. indica. In the present study we determined the prey stage preference of N. barkeri when offered different stages of R. indica besides its functional response and numerical over its prey stage preferred. The predatory mite N. barkeri showed a marked preference for eggs over other stages of the prey. The regression analysis indicated that the predatory mite N. barkeri exhibited a Type II functional response. The prey density needed to start the oviposition was 10 R. indica eggs. The number of eggs laid by N. barkeri females increased with an increase in the prey density and tended to stabilize when prey availability was greater than 80 R. indica eggs, with average oviposition of 2 eggs/female. Our study suggests that N. barkeri shows potential to reduce populations of R. indica, especially at low prey densities. However, further studies are needed to investigate whether R. indica supports the development of immature stages of N. barkeri.


2016 ◽  
Vol 21 (3) ◽  
pp. 295 ◽  
Author(s):  
Guo Hao Zhang ◽  
Ya Ying Li ◽  
Kai Jun Zhang ◽  
Jin Jun Wang ◽  
Yi Qing Liu ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Manish Tiwari ◽  
Sneha Krishnamurthy ◽  
Devesh Shukla ◽  
Jeffrey Kiiskila ◽  
Ajay Jain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document