scholarly journals Effect of Low Versus High Tidal-Volume Total Liquid Ventilation on Pulmonary Inflammation

2020 ◽  
Vol 11 ◽  
Author(s):  
Michaël Sage ◽  
Wendy See ◽  
Stéphanie Nault ◽  
Christophe Morin ◽  
Christina Michalski ◽  
...  
2006 ◽  
Vol 20 (2) ◽  
pp. 141-144 ◽  
Author(s):  
Yasuki Fujita ◽  
Yuji Fujino ◽  
Yoshiko Maeda ◽  
Akinori Uchiyama ◽  
Takashi Mashimo ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Haifa Xia ◽  
Jingxu Wang ◽  
Shujun Sun ◽  
Fuquan Wang ◽  
Yiyi Yang ◽  
...  

As one of the basic treatment modalities in the intensive care unit (ICU), mechanical ventilation can cause or aggravate acute lung injury or ventilator-induced lung injury (VILI). Resolvin D1 (RvD1) is an endogenous polyunsaturated fatty acid derivative with strong anti-inflammatory action. In this study, we explored if RvD1 possesses a protective effect on VILI. Mice were ventilated with high tidal volume (40 mL/kg, HVT) for 4 h and were then intraperitoneally administered RvD1 at the beginning of high tidal volume ventilation and given GW9662 (a PPAR-γ antagonist) intraperitoneally 30 min before ventilation. RvD1 attenuated VILI, as evidenced by improved oxygenation and reduced histological injury, compared with HVT -induced lung injury. Similarly, it could ameliorate neutrophil accumulation and production of proinflammatory cytokines in lung tissue. In contrast, the protective effect of RvD1 on lung tissue could be reversed by GW9662. RvD1 mitigated VILI by activating peroxisome proliferator-activated receptor gamma (PPAR-γ) and inhibiting nuclear factor-kappa B (NF-κB) signaling pathways in mice. In conclusion, RvD1 could reduce the inflammatory response in VILI by activating PPAR-γ and inhibiting NF-κB signaling pathways.


Author(s):  
Samira Norouzrajabi ◽  
Shahrzad Ghiyasvandian ◽  
Alireza Jeddian ◽  
Ali Karimi Rozveh ◽  
Leila Sayadi

Background: Patients under mechanical ventilation are at risk of ventilator-associated complications. One of these complications is lung injury due to high tidal volume. Nurses’ competence in mechanical ventilation is critical for preventing ventilator-associated complications. This study assessed the effects of feedback and education on nurses’ clinical competence in mechanical ventilation and accurate tidal volume setting. Methods: This single arm pretest-post-test interventional study was conducted in 2019 at Shariati hospital affiliated to Tehran University of Medical Sciences. Participants were 75 conveniently selected nurses. Initially, nurses’ clinical competence in mechanical ventilation and ventilator parameters of 250 patients were assessed. A mechanical ventilation -based feedback and education intervention was implemented for nurses. Finally, mechanical ventilation clinical competence of nurses and ventilator parameters of 250 new patients were assessed. Moreover, patients’ height was estimated based on their ulna length and then, their predicted body weight was calculated using their estimated height. Accurate tidal volume was determined per predicted body weight.  Results: The mean score of nurses’ clinical competence increased from 8.27±3.09 at pretest to 10.07±3.34 at post-test (p<0.001). The mean values of both total tidal volume and tidal volume per kilogram of predicted body weight were significantly reduced respectively from 529.84±69.11 and 9.11±1.73 (ml) at pretest to 476.30±31.01 and 7.79±1.14 (ml) at post-test (p<0.001). Conclusion: The feedback and education intervention is effective in promoting nurses’ clinical competence in mechanical ventilation and reducing tidal volume. Thereby, it can reduce lung injuries associated with high tidal volume and ensure patient safety.


2010 ◽  
Vol 8 (1) ◽  
pp. 3 ◽  
Author(s):  
Adrian Doroszko ◽  
Thomas S Hurst ◽  
Dorota Polewicz ◽  
Jolanta Sawicka ◽  
Justyna Fert-Bober ◽  
...  

2012 ◽  
Vol 51 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Juliana Monte Real ◽  
Graziela Machado Gruner Turco Spilborghs ◽  
Mariana Morato-Marques ◽  
Ricardo Pereira de Moura ◽  
Elnara Marcia Negri ◽  
...  

2003 ◽  
Vol 284 (5) ◽  
pp. L791-L798 ◽  
Author(s):  
James A. Frank ◽  
Jean-François Pittet ◽  
Hyon Lee ◽  
Micaela Godzich ◽  
Michael A. Matthay

Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% ( P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.


Sign in / Sign up

Export Citation Format

Share Document