scholarly journals Interlimb Coordination: A New Order Parameter and a Marker of Fatigue During Quasi-Isometric Exercise?

2021 ◽  
Vol 11 ◽  
Author(s):  
Pablo Vázquez ◽  
Monika Petelczyc ◽  
Robert Hristovski ◽  
Natàlia Balagué

Although exercise-induced fatigue has been mostly studied from a reductionist and component-dominant approach, some authors have started to test the general predictions of theories of self-organized change during exercises performed until exhaustion. However, little is known about the effects of fatigue on interlimb coordination in quasi-isometric actions. The aim of this study was to investigate the effect of exercise-induced fatigue on upper interlimb coordination during a quasi-isometric exercise performed until exhaustion. In order to do this, we hypothesized an order parameter that governs the interlimb coordination as an interlimb correlation measure. In line with general predictions of theory of phase transitions, we expected that the locally averaged values of the order parameter will increase as the fatigue driven system approaches the point of spontaneous task disengagement. Seven participants performed a quasi-isometric task holding an Olympic bar maintaining an initial elbow flexion of 90 degrees until fatigue induced spontaneous task disengagement. The variability of the elbow angle was recorded through electrogoniometry and the obtained time series were divided into three segments for further analysis. Running correlation function (RCF) and adopted bivariate phase rectified signal averaging (BPRSA) were applied to the corresponding initial (30%) and last (30%) segments of the time series. The results of both analyses showed that the interlimb correlation increased between the initial and the final segments of the performed task. Hence, the hypothesis of the research was supported by evidence. The enhancement of the correlation in the last part means a less flexible coordination among limbs. Our results also show that the high magnitude correlation (%RCF > 0.8) and the %Range (END-BEG) may prove to be useful markers to detect the effects of effort accumulation on interlimb coordination. These results may provide information about the loss of adaptability during exercises performed until exhaustion. Finally, we briefly discuss the hypothesis of the inhibitory percolation process being the general explanation of the spontaneous task disengagement phenomenon.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Andrey Dmitriev ◽  
Victor Dmitriev ◽  
Stepan Balybin

Recently, there has been an increasing number of empirical evidence supporting the hypothesis that spread of avalanches of microposts on social networks, such as Twitter, is associated with some sociopolitical events. Typical examples of such events are political elections and protest movements. Inspired by this phenomenon, we built a phenomenological model that describes Twitter’s self-organization in a critical state. An external manifestation of this condition is the spread of avalanches of microposts on the network. The model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown that the adiabatic mode of self-organization in a critical state is determined by the intensive coordinated action of a relatively small number of network users. To identify the critical states of the network and to verify the model, we have proposed a spectrum of three scaling indicators of the observed time series of microposts.


2007 ◽  
Vol 112 (8) ◽  
pp. 441-447 ◽  
Author(s):  
Tom S. Davies ◽  
Michael P. Frenneaux ◽  
Ross I. Campbell ◽  
Michael J. White

The effects of exercise on the distensibility of large and medium-sized arteries are poorly understood, but can be attributed to a combination of local vasodilator effects of exercise opposed by sympathetic vasoconstrictor tone. We sought to examine this relationship at the conduit artery level, with particular reference to the role of the sympatho-excitatory muscle metaboreflex. The effect of maintained muscle metaboreflex activation on a previously passive or exercised limb femoral artery was investigated. A total of ten healthy volunteers performed 2 min of isometric ankle plantar-flexion at 40% MVC (maximal voluntary force), in conjunction with 2 min of either non-ischaemic isometric HG (handgrip; control condition) or IHG (ischaemic HG) at 40% MVC. IHG was followed by 2 min of PECO (post-exercise circulatory occlusion) to maintain muscle metaboreflex activation. FTPWV [femoral–tibial PWV (pulse wave velocity)] was measured in the exercised or contralateral limb at baseline and immediately following calf exercise. BP (blood pressure) and HR (heart rate) were measured continuously throughout. In the HG condition, BP and HR returned promptly to baseline post-exercise, whereas exercised leg FTPWV was decreased (less stiff) by 0.6 m/s (P<0.05) and the non-exercised leg PWV was not changed from baseline. PECO caused a sustained increase in BP, but not HR, in the IHG condition. Contralateral leg PWV increased (stiffened) during PECO by 0.9 m/s (P<0.05), whereas exercised limb FTPWV was not changed from baseline. In conclusion, muscle metaboreflex activation causes a systemic stiffening of the arterial tree, which can overcome local exercise-induced decreases in arterial PWV.


2017 ◽  
Vol 25 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Mikhail D. Prokhorov ◽  
◽  
Vladimir I. Ponomarenko ◽  
Ilya V. Sysoev ◽  
◽  
...  

2019 ◽  
Vol 37 (3) ◽  
pp. 315-324 ◽  
Author(s):  
Panayiotis A. Varotsos ◽  
Nicholas V. Sarlis ◽  
Efthimios S. Skordas

Abstract. The analysis of earthquake time series in a new time domain termed natural time enables the uncovering of hidden properties in time series of complex systems and has been recently employed as the basis of a method to estimate seismic risk. Natural time also enables the determination of the order parameter of seismicity, which is a quantity by means of which one can identify when the system approaches the critical point (the mainshock occurrence is considered the new phase). Applying this analysis, as an example, to the Japanese seismic data from 1 January 1984 until the super-giant M 9 Tōhoku earthquake on 11 March 2011, we find that almost 3 months before its occurrence the entropy change of seismicity under time reversal is minimized on 22 December 2010, which signals an impending major earthquake. On this date the order parameter fluctuations of seismicity exhibit an abrupt increase. This increase is accompanied by various phenomena; e.g., from this date the horizontal GPS azimuths start to become gradually oriented toward the southern direction, while they had random orientation during the preceding period. Two weeks later, a minimum of the order parameter fluctuations of seismicity appears accompanied by anomalous Earth magnetic field variations and by full alignment of the orientations of GPS azimuths southwards leading to the most intense crust uplift. These phenomena are discussed and found to be in accordance with a physical model which seems to explain on a unified basis anomalous precursory changes observed either in ground-based measurements or in satellite data.


2020 ◽  
Vol 544 ◽  
pp. 123508
Author(s):  
Y.F. Contoyiannis ◽  
S.M. Potirakis ◽  
F.K. Diakonos
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Shi Kai ◽  
Liu Chun-Qiong ◽  
Li Si-Chuan

We analyze long-term time series of daily average PM10 concentrations in Chengdu city. Detrended fluctuation analysis of the time series shows long range correlation at one-year temporal scale. Spectral analysis of the time series indicates 1/f noise behavior. The probability distribution functions of PM10 concentrations fluctuation have a scale-invariant structure. Why do the complex structures of PM10 concentrations evolution exhibit scale-invariant? We consider that these complex dynamical characteristics can be recognized as the footprint of self-organized criticality (SOC). Based on the theory of self-organized criticality, a simplified sandpile model for PM10 pollution with a nondimensional formalism is put forward. Our model can give a good prediction of scale-invariant in PM10 evolution. A qualitative explanation of the complex dynamics observed in PM10 evolution is suggested. The work supports the proposal that PM10 evolution acts as a SOC process on calm weather. New theory suggests one way to understand the origin of complex dynamical characteristics in PM10 pollution.


Sign in / Sign up

Export Citation Format

Share Document