scholarly journals The Role of Macrophage Migration Inhibitory Factor in Adipose-Derived Stem Cells Under Hypoxia

2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Hofmann ◽  
Josefin Soppert ◽  
Tim Ruhl ◽  
Epameinondas Gousopoulos ◽  
Simona Gerra ◽  
...  

Background: Adipose-derived stem cells (ASCs) are multipotent mesenchymal stem cells characterized by their strong regenerative potential and low oxygen consumption. Macrophage migration inhibitory factor (MIF) is a multifunctional chemokine-like cytokine that is involved in tissue hypoxia. MIF is not only a major immunomodulator but also is highly expressed in adipose tissue such as subcutaneous adipose tissue of chronic non-healing wounds. In the present study, we investigated the effect of hypoxia on MIF in ASCs isolated from healthy versus inflamed adipose tissue.Methods: Human ASCs were harvested from 17 patients (11 healthy adipose tissue samples, six specimens from chronic non-healing wounds). ASCs were treated in a hypoxia chamber at <1% oxygen. ASC viability, MIF secretion as well as expression levels of MIF, its receptor CD74, hypoxia-inducible transcription factor-1α (HIF-1α) and activation of the AKT and ERK signaling pathways were analyzed. The effect of recombinant MIF on the viability of ASCs was determined. Finally, the effect of MIF on the viability and production capacity of ASCs to produce the inflammatory cytokines tumor necrosis factor (TNF), interleukin (IL)-6, and IL-1β was determined upon treatment with recombinant MIF and/or a blocking MIF antibody.Results: Hypoxic treatment inhibited proliferation of ASCs derived from healthy or chronic non-healing wounds. ASCs from healthy adipose tissue samples were characterized by a low degree of MIF secretion during hypoxic challenge. In contrast, in ASCs from adipose tissue samples of chronic non-healing wounds, secretion and expression of MIF and CD74 expression were significantly elevated under hypoxia. This was accompanied by enhanced ERK signaling, while AKT signaling was not altered. Recombinant MIF did stimulate HIF-1α expression under hypoxia as well as AKT and ERK phosphorylation, while no effect on ASC viability was observed. Recombinant MIF significantly reduced the secretion of IL-1β under hypoxia and normoxia, and neutralizing MIF-antibodies diminished TNF-α and IL-1β release in hypoxic ASCs.Conclusions: Collectively, MIF did not affect the viability of ASCs from neither healthy donor site nor chronic wounds. Our results, however, suggest that MIF has an impact on the wound environment by modulating inflammatory factors such as IL-1β.

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137366 ◽  
Author(s):  
Bong-Sung Kim ◽  
Robert Rongisch ◽  
Stephan Hager ◽  
Gerrit Grieb ◽  
Mahtab Nourbakhsh ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (12) ◽  
pp. 6037-6042 ◽  
Author(s):  
Daisuke Ikeda ◽  
Shinji Sakaue ◽  
Mitsunori Kamigaki ◽  
Hiroshi Ohira ◽  
Naofumi Itoh ◽  
...  

Obesity is a condition in which adipose tissue mass is expanded. Increases in both adipocyte size and number contribute to enlargement of adipose tissue. The increase in cell number is thought to be caused by proliferation and differentiation of preadipocytes. Macrophage migration inhibitory factor (MIF) is expressed in adipocytes, and intracellular MIF content is increased during adipogenesis. Therefore, we hypothesized that MIF is associated with adipocyte biology during adipogenesis and focused on the influence of MIF on adipogenesis. To examine the effects of MIF on adipocytes, MIF expression in 3T3-L1 preadipocytes was inhibited by RNA interference, and cell differentiation was induced by standard procedures. The triglyceride content of MIF small interfering RNA (siRNA)-transfected 3T3-L1 cells was smaller than that of nonspecific siRNA-transfected cells. In addition, MIF knockdown apparently abrogated increases in adiponectin mRNA levels during differentiation. Gene expression of peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer binding protein (C/EBP)α, and C/EBPδ decreased with MIF siRNA transfection, but C/EBPβ expression increased. Cell number and incorporation of 5-bromo-2-deoxyuridine into cells decreased from 1–3 d and from 14–20 h, respectively, after induction of differentiation in MIF siRNA-transfected cells, thus suggesting that MIF siRNA inhibits mitotic clonal expansion. Taken together, these results indicated that MIF regulates differentiation of 3T3-L1 preadipocytes, at least partially, through inhibition of mitotic clonal expansion and/or C/EBPδ expression.


2014 ◽  
Vol 4 (1_suppl) ◽  
pp. s-0034-1376633-s-0034-1376633
Author(s):  
C. Xiong ◽  
B. Huang ◽  
Y. Zhou ◽  
Y. Cun ◽  
L. Liu ◽  
...  

2019 ◽  
Vol 41 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Jamal Khalilpour ◽  
Shiva Roshan-Milani ◽  
Farzaneh Hosseini Gharalari ◽  
Amin Abdollahzade Fard

Abstract Introduction: It is hypothesized that increased macrophage migration inhibitory factor (MIF) expression may contribute to diabetic nephropathy (DN) pathogenesis. The aim of the present study was to investigate the renal effects of MIF inhibition in a diabetic experimental model. Methods: Eighteen male Wistar rats (230 ± 20 g) were divided into three groups: 1) control, 2) diabetic (STZ, 50 mg/kg, dissolved in saline, ip), 3) diabetic + MIF antagonist (p425, 1 mg/kg per day, ip, on the 21th day, for 21 consecutive days). The treatment started since we founwd a significant increase in urine albumin excretion (UAE) rate in the diabetic rats in comparison with the control rats. The rats were kept individually in metabolic cages (8 AM-2 PM) and urine samples were collected in the 21 and 42th day. At the end, blood and tissue samples were collected for biochemical (BS, UPE, urine GAG, BUN, Cr, Na, and K) and histological analyses. Results: The results of this study showed that MIF antagonist (p425) significantly decreased urine protein and GAG excretion, urine protein/creatinine ratio, and serum BUN and Cr in the streptozotocin-induced DN in the rats. Pathological changes were significantly alleviated in the MIF antagonist (p425)-administered DN rats. Conclusion: Collectively, these data suggested that MIF antagonist (p425) was able to protect against functional and histopathological injury in the DN.


Sign in / Sign up

Export Citation Format

Share Document