scholarly journals Ultrasonic Elastography of the Rectus Femoris, a Potential Tool to Predict Sarcopenia in Patients With Chronic Obstructive Pulmonary Disease

2022 ◽  
Vol 12 ◽  
Author(s):  
Mingming Deng ◽  
Xiaoming Zhou ◽  
Yanxia Li ◽  
Yan Yin ◽  
Chaonan Liang ◽  
...  

Purpose: Skeletal muscle dysfunction is common in patients with chronic obstructive pulmonary disease (COPD) and is associated with a poor prognosis. Abnormal muscle quantity of the lower limbs is a manifestation of skeletal muscle dysfunction in patients with COPD. Shear wave ultrasound elastography (SWE) is a novel and possible tool to evaluate qualitative muscle parameters. This study explores the feasibility of SWE to measure the stiffness of the rectus femoris and evaluates its value in predicting sarcopenia in patients with COPD.Methods: Ultrasound examination of the rectus femoris was performed to determine the mean elasticity index (SWEmean), cross-sectional area (RFcsa), and thickness (RFthick) using grayscale ultrasonography (US) and SWE in 53 patients with COPD and 23 age-matched non-COPD healthy controls. The serum levels of circulating biomarkers (GDF15, resistin, and TNF-α) were measured using ELISA. The definition of sarcopenia followed the guidelines from the Asian Working Group for Sarcopenia. Receiver operating characteristic (ROC) curve analysis of the SWEmean, RFthick, and RFcsa was used to evaluate their predictive ability for sarcopenia.Results: The intraobserver and interobserver repeatability of SWE performance was excellent (all correlation coefficients > 0.95; p < 0.05). The SWEmean of the rectus femoris in patients with COPD (8.98 ± 3.12 kPa) was decreased compared with that in healthy controls (17.00 ± 5.14 kPa) and decreased with advanced global initiative for chronic obstructive lung disease (GOLD) stage. Furthermore, SWEmean was found to be independent of sex, height, and body mass, and a lower SWEmean in patients with COPD was positively associated with reduced pulmonary function, worse physical function, poor exercise tolerance, decreased muscle strength, and worse dyspnea index score. The correlation between physical function [five-repetition sit-to-stand test (5STST)], muscle function, and SWEmean was higher than those of RFthick and RFcsa. In addition, SWEmean was negatively correlated with serum GDF15 levels (r = −0.472, p < 0.001), serum resistin levels (r = −0.291, p = 0.035), and serum TNF-α levels (r = −0.433, p = 0.001). Finally, the predictive power of SWEmean [area under the curve (AUC): 0.863] in the diagnosis of sarcopenia was higher than that of RFthick (AUC: 0.802) and RFcsa (AUC: 0.816).Conclusion: Compared with grayscale US, SWE was not affected by the patient’s height, weight, or BMI and better represented skeletal muscle function and physical function. Furthermore, SWE is a promising potential tool to predict sarcopenia in patients with COPD.

2006 ◽  
Vol 290 (4) ◽  
pp. F753-F761 ◽  
Author(s):  
Gregory R. Adams ◽  
Nosratola D. Vaziri

A number of chronic illnesses such as renal failure (CRF), obstructive pulmonary disease, and congestive heart failure result in a significant decrease in exercise tolerance. There is an increasing awareness that prescribed exercise, designed to restore some level of physical performance and quality of life, can be beneficial in these conditions. In CRF patients, muscle function can be affected by a number of direct and indirect mechanisms caused by renal disease as well as various treatment modalities. The aims of this review are twofold: first, to briefly discuss the mechanisms by which CRF negatively impacts skeletal muscle and, therefore, exercise capacity, and, second, to discuss the available data on the effects of programmed exercise on muscle function, exercise capacity, and various other parameters in CRF.


2009 ◽  
Vol 117 (7) ◽  
pp. 251-264 ◽  
Author(s):  
William D.-C. Man ◽  
Paul Kemp ◽  
John Moxham ◽  
Michael I. Polkey

COPD (chronic obstructive pulmonary disease), although primarily a disease of the lungs, exhibits secondary systemic manifestations. The skeletal muscles are of particular interest because their function (or dysfunction) not only influences the symptoms that limit exercise, but may contribute directly to poor exercise performance. Furthermore, skeletal muscle weakness is of great clinical importance in COPD as it is recognized to contribute independently to poor health status, increased healthcare utilization and even mortality. The present review describes the current knowledge of the structural and functional abnormalities of skeletal muscles in COPD and the possible aetiological factors. Increasing knowledge of the molecular pathways of muscle wasting will lead to the development of new therapeutic agents and strategies to combat COPD muscle dysfunction.


2020 ◽  
Vol 21 (3) ◽  
pp. 955 ◽  
Author(s):  
Joseph Balnis ◽  
Tanner C. Korponay ◽  
Ariel Jaitovich

Skeletal muscle dysfunction is a major comorbidity in chronic obstructive pulmonary disease (COPD) and other pulmonary conditions. Chronic CO2 retention, or hypercapnia, also occur in some of these patients. Both muscle dysfunction and hypercapnia associate with higher mortality in these populations. Over the last years, we have established a mechanistic link between hypercapnia and skeletal muscle dysfunction, which is regulated by AMPK and causes depressed anabolism via reduced ribosomal biogenesis and accelerated catabolism via proteasomal degradation. In this review, we discuss the main findings linking AMPK with hypercapnic pulmonary disease both in the lungs and skeletal muscles, and also outline potential avenues for future research in the area based on knowledge gaps and opportunities to expand mechanistic research with translational implications.


Sign in / Sign up

Export Citation Format

Share Document