scholarly journals Transient Receptor Potential-Vanilloid (TRPV1-TRPV4) Channels in the Atlantic Salmon, Salmo salar. A Focus on the Pineal Gland and Melatonin Production

2022 ◽  
Vol 12 ◽  
Author(s):  
Laura Gabriela Nisembaum ◽  
Guillaume Loentgen ◽  
Thibaut L’Honoré ◽  
Patrick Martin ◽  
Charles-Hubert Paulin ◽  
...  

Fish are ectotherm, which rely on the external temperature to regulate their internal body temperature, although some may perform partial endothermy. Together with photoperiod, temperature oscillations, contribute to synchronizing the daily and seasonal variations of fish metabolism, physiology and behavior. Recent studies are shedding light on the mechanisms of temperature sensing and behavioral thermoregulation in fish. In particular, the role of some members of the transient receptor potential channels (TRP) is being gradually unraveled. The present study in the migratory Atlantic salmon, Salmo salar, aims at identifying the tissue distribution and abundance in mRNA corresponding to the TRP of the vanilloid subfamilies, TRPV1 and TRPV4, and at characterizing their putative role in the control of the temperature-dependent modulation of melatonin production—the time-keeping hormone—by the pineal gland. In Salmo salar, TRPV1 and TRPV4 mRNA tissue distribution appeared ubiquitous; mRNA abundance varied as a function of the month investigated. In situ hybridization and immunohistochemistry indicated specific labeling located in the photoreceptor cells of the pineal gland and the retina. Additionally, TRPV analogs modulated the production of melatonin by isolated pineal glands in culture. The TRPV1 agonist induced an inhibitory response at high concentrations, while evoking a bell-shaped response (stimulatory at low, and inhibitory at high, concentrations) when added with an antagonist. The TRPV4 agonist was stimulatory at the highest concentration used. Altogether, the present results agree with the known widespread distribution and role of TRPV1 and TRPV4 channels, and with published data on trout (Oncorhynchus mykiss), leading to suggest these channels mediate the effects of temperature on S. salar pineal melatonin production. We discuss their involvement in controlling the timing of daily and seasonal events in this migratory species, in the context of an increasing warming of water temperatures.

2021 ◽  
Vol 22 (7) ◽  
pp. 3360
Author(s):  
Mee-Ra Rhyu ◽  
Yiseul Kim ◽  
Vijay Lyall

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


2002 ◽  
Vol 92 (4) ◽  
pp. 1594-1602 ◽  
Author(s):  
Michele Sweeney ◽  
Sharon S. McDaniel ◽  
Oleksandr Platoshyn ◽  
Shen Zhang ◽  
Ying Yu ◽  
...  

Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents ( I SOC) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+channels by Ni2+ decreased I SOC and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I SOC, enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 334
Author(s):  
Huilong Luo ◽  
Xavier Declèves ◽  
Salvatore Cisternino

The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.


Physiology ◽  
2021 ◽  
Vol 36 (5) ◽  
pp. 292-306
Author(s):  
Heather A. Drummond

Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.


Author(s):  
Sanjeev K. Singh ◽  
M. S. Muthu ◽  
Ravindran Revand ◽  
M. B. Mandal

Background: Since long back, it has been a matter of discussion regarding the role of peripheral blood vessels in regulation of cardiorespiratory (CVR) system. Objective: The role of 5-HT3 and TRPV1 receptors present on perivascular nerves in elicitation of CVR reflexes was examined after intra-arterial instillation of bradykinin in urethane anesthetized rats. Materials and Methods: Femoral artery was cannulated retrogradely and was utilized for the instillation of saline/agonist/antagonist and recording of blood pressure (BP), using a double ported 24G cannula. BP, respiration and ECG were recorded for 30 min after bradykinin (1 µM) in the absence or presence of antagonists. Results: Instillation of bradykinin produced immediate hypotensive (40%), bradycardiac (17%), tachypnoeic (45%) and hyperventilatory (96%) responses of shorter latencies (5-8 s) favoring the neural mechanisms in producing the responses. In lignocaine (2%) pretreated animals, bradykinin-induced hypotensive (10%), bradycardiac (1.7%), tachypnoeic (13%) and hyperventilatory (13%) responses attenuated significantly. Pretreatment with ondansetron (100 µg/kg), 5-HT3-antagonist attenuated the hypotensive (10%), bradycardiac (1.7%), tachypnoeic (11%) and hyperventilatory (11%) responses significantly. Pretreatment with capsazepine (1 mg/kg), transient receptor potential vanilloid 1- antagonist blocked the hypotensive (5%), bradycardiac (1.2%), tachypnoeic (6%) and hyperventilatory (6%) responses significantly. Conclusion: In conclusion, presence of a nociceptive agent in the local segment of an artery evokes vasosensory reflex responses modulating CVR parameters involving TRPV1 and 5-HT3 receptors present on the perivascular sensory nerve terminals in anesthetized rats.


Sign in / Sign up

Export Citation Format

Share Document