scholarly journals Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula

2014 ◽  
Vol 5 ◽  
Author(s):  
Albert C. S. Wong ◽  
Valérie F. G. Hecht ◽  
Kelsey Picard ◽  
Payal Diwadkar ◽  
Rebecca E. Laurie ◽  
...  
2013 ◽  
Vol 40 (12) ◽  
pp. 1199 ◽  
Author(s):  
Joanna Putterill ◽  
Lulu Zhang ◽  
Chin Chin Yeoh ◽  
Martin Balcerowicz ◽  
Mauren Jaudal ◽  
...  

Flowering time is an important contributor to plant productivity and yield. Plants integrate flowering signals from a range of different internal and external cues in order to flower and set seed under optimal conditions. Networks of genes controlling flowering time have been uncovered in the flowering models Arabidopsis, wheat, barley and rice. Investigations have revealed important commonalities such as FT genes that promote flowering in all of these plants, as well as regulators that are unique to some of them. FT genes also have functions beyond floral promotion, including acting as floral repressors and having a complex role in woody polycarpic plants such as vines and trees. However, much less is known overall about flowering control in other important groups of plants such as the legumes. This review discusses recent efforts to uncover flowering-time regulators using candidate gene approaches or forward screens for spring early flowering mutants in the legume Medicago truncatula. The results highlight the importance of a Medicago FT gene, FTa1, in flowering-time control. However, the mechanisms by which FTa1 is regulated by environmental signals such as long days (photoperiod) and vernalisation (winter cold) appear to differ from Arabidopsis.


2020 ◽  
Vol 36 (6) ◽  
pp. 49-54
Author(s):  
A.A. Nalbandyan ◽  
T.P. Fedulova ◽  
I.V. Cherepukhina ◽  
T.I. Kryukova ◽  
N.R. Mikheeva ◽  
...  

The flowering time control gene of various sugar beet plants has been studied. The BTC1 gene is a regulator for the suppressor (flowering time 1) and inducer (flowering time 2) genes of this physiological process. The F9/R9 primer pair was used for polymerase chain reaction; these primers are specific to the BTC1 gene region containing exon 9, as well as intron and exon 10. For the first time, nucleotide substitutions in exon 10 of BTC1 gene were identified in bolting sensitive samples (HF1 and BF1), which led to a change in the amino acid composition of the coded polypeptide chain. Based on the results of bioinformatic analysis, it can be assumed that certain nucleotide polymorphisms in the BTC1 gene may determine with a high probability the predisposition of sugar beet genotypes to early flowering. The use of the Geneious Prime tool for the analysis of the BTC1 gene sequences may allow the culling of genotypes prone to early flowering at early stages of selection. sugar beet, flowering gene, BTC1, genetic polymorphism, PCR, molecular genetic markers, selection


2013 ◽  
Vol 65 (2) ◽  
pp. 353-363 ◽  
Author(s):  
Katarzyna Rataj ◽  
Gordon G. Simpson

2020 ◽  
Author(s):  
Konrad Weber ◽  
Lucasz Krych ◽  
Meike Burow

Abstract Plants coordinate metabolic and developmental processes with the help of genetically variable, interconnected regulatory networks. The GSL-AOP locus in Arabidopsis thaliana encodes enzymes involved in the biosynthesis of glucosinolate defense compounds and has been attributed regulatory functions e.g. in flowering time control. To correlate genetic and phenotypic variation linked to GSL-AOP, we conducted a phylogenetic analysis across 1135 accessions and found that the available short-read sequencing data does not fully resolve the structural diversity in the locus. We analyzed a selection of 74 accessions for glucosinolate profiles and flowering time under different conditions and acquired long-read sequence information for glucosinolate and flowering time loci. Especially in the Caucasus region, structural variation in GSL-AOP was associated with conditional, tissue-specific glucosinolate profiles. Variation in FLC among the Caucasian accessions correlated with variation in the flowering time response to vernalization, suggesting that local adaptation has shaped defense and development in an orchestrated manner.


2018 ◽  
Vol 47 (1) ◽  
pp. 34-45
Author(s):  
Guan-Peng MA ◽  
Da-Qin ZHAO ◽  
Tian-Wen WANG ◽  
Lin-Bi ZHOU ◽  
Gui-Lian LI

B-box (BBX) zinc finger proteins play critical roles in both vegetative and reproductive development in plants. Many BBX proteins have been identified in Arabidopsis thaliana as floral transition regulatory factors, such as CO, BBX7 (COL9), BBX19, and BBX32. BBX32 is involved in flowering time control through repression of COL3 in Arabidopsis thaliana, but it is still elusive that whether and how BBX32 directly interacts with flowering signal integrators of AGAMOUS-LIKE 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in Chinese cabbage (Brassica rapa L. ssp. pekinensis) or other plants. In this study, B-box-32(BBX32), a transcription factor in this family with one B-box motif was cloned from B. rapa, acted as a circadian clock protein, showing expression changes during the circadian period. Additional experiments using GST pull-down and yeast two-hybrid assays indicated that BrBBX32 interacts with BrAGL24 and does not interact with BrSOC1, while BrAGL24 does interact with BrSOC1. To investigate the domains involved in these protein-protein interactions, we tested three regions of BrBBX32. Only the N-terminus interacted with BrAGL24, indicating that the B-box domain may be the key region for protein interaction. Based on these data, we propose that BrBBX32 may act in the circadian clock pathway and relate to the mechanism of flowering time regulation by binding to BrAGL24 through the B-box domain. This study will provide valuable information for unraveling the molecular regulatory mechanisms of BrBBX32 in flowering time of B. rapa.


2020 ◽  
Vol 84 (5) ◽  
pp. 970-979 ◽  
Author(s):  
Norihito Nakamichi ◽  
Toru Kudo ◽  
Nobue Makita ◽  
Takatoshi Kiba ◽  
Toshinori Kinoshita ◽  
...  

2005 ◽  
Vol 56 (9) ◽  
pp. 919 ◽  
Author(s):  
Stephen M. Welch ◽  
Zhanshan Dong ◽  
Judith L. Roe ◽  
Sanjoy Das

Flowering is a key stage in plant development that initiates grain production and is vulnerable to stress. The genes controlling flowering time in the model plant Arabidopsis thaliana are reviewed. Interactions between these genes have been described previously by qualitative network diagrams. We mathematically relate environmentally dependent transcription, RNA processing, translation, and protein–protein interaction rates to resultant phenotypes. We have developed models (reported elsewhere) based on these concepts that simulate flowering times for novel A. thaliana genotype–environment combinations. Here we draw 12 contrasts between genetic network (GN) models of this type and quantitative genetics (QG), showing that both have equal contributions to make to an ideal theory. Physiological dominance and additivity are examined as emergent properties in the context of feed-forwards networks, an instance of which is the signal-integration portion of the A. thaliana flowering time network. Additivity is seen to be a complex, multi-gene property with contributions from mass balance in transcript production, the feed-forwards structure itself, and downstream promoter reaction thermodynamics. Higher level emergent properties are exemplified by critical short daylength (CSDL), which we relate to gene expression dynamics in rice (Oryza sativa). Next to be discussed are synergies between QG and GN relating to the quantitative trait locus (QTL) mapping of model coefficients. This suggests a new verification test useful in GN model development and in identifying needed updates to existing crop models. Finally, the utility of simple models is evinced by 80 years of QG theory and mathematical ecology.


2011 ◽  
Vol 6 (5) ◽  
pp. 776-784 ◽  
Author(s):  
Kaeli Johnson ◽  
Oliver Dong ◽  
Xin Li

AbstractRecent work in plant immunity has shown that MOS4, a known intermediate in R protein mediated resistance, is a core member of the nuclear MOS4-associated complex (MAC). This complex is highly conserved in eukaryotes, as orthologous complexes known as the CDC5L-SNEVPrp19-Pso4 complex and the Nineteen complex (NTC) were previously identified in human and yeast, respectively. The involvement of these complexes in pre-mRNA splicing and spliceosome assembly suggests that the MAC probably has a similar function in plants. Double mutants of any two MAC components are lethal, whereas single mutants of the MAC core components mos4, Atcdc5, mac3, and prl1 are all viable and display pleiotropic defects. This suggests that while the MAC is required for some essential biological function such as splicing, individual MAC components are not crucial for complex functionality and likely have regulatory roles in other biological processes such as plant immunity and flowering time control. Future studies on MAC components in Arabidopsis will provide further insight into the regulatory mechanisms of the MAC on specific biological processes.


2020 ◽  
Vol 42 (12) ◽  
Author(s):  
Yuanda Wang ◽  
Wei Jiang ◽  
Yue Dong ◽  
Xiao Ma ◽  
Wenwen Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document