scholarly journals Genotypic Variation in Nitrogen Utilization Efficiency of Oilseed Rape (Brassica napus) Under Contrasting N Supply in Pot and Field Experiments

2017 ◽  
Vol 8 ◽  
Author(s):  
Huiying He ◽  
Rui Yang ◽  
Yajun Li ◽  
Aisheng Ma ◽  
Lanqin Cao ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1183 ◽  
Author(s):  
Yangyang Zhang ◽  
Piaopiao Lu ◽  
Tao Ren ◽  
Jianwei Lu ◽  
Li Wang

Cultivation of winter oilseed rape hybrids has been introduced as a promising solution to improve the nitrogen use efficiency (NUE) and to reduce the large N balance surpluses in this crop. To achieve a better understanding of the underlying physiological mechanisms, field experiments were conducted over two years to investigate the dynamics of growth and N capture in an oilseed rape hybrid and its parental lines under both low (0 kg ha−1) and high (180 kg ha−1) N supply. The results showed that the dynamic trajectories of crop growth and N capture could be accurately characterized by logistic equation using growing degree days as the independent variable. At both N rates, the oilseed rape hybrid outperformed the parental lines in seed yield and aboveground biomass accumulation, which was more closely associated with the longer duration (td) of the rapid growth period (RGP), than with the higher maximum growth rate (vm). N uptake was the main factor driving genotypic variation in seed yield, with an increasing importance of N utilization efficiency at high N supply. The hybrid had significantly higher N uptake than the parental lines at both low and high N supply, because of larger vm for N accumulation during the RGP, which may present a scope for genetically improving NUE in oilseed rape. High N application enhanced crop biomass production and N accumulation, as a result of prolonged td and larger vm during the RGP. The initiation of RGP for N accumulation occurred after overwinter period, which could not be accelerated by high N supply, suggesting rational distribution of N fertilizer with reduced basal dose. However, larger amounts in spring would be beneficial for a better synchronization to crop N demand with lower environmental risks.


2001 ◽  
Vol 1 ◽  
pp. 61-69 ◽  
Author(s):  
Franz Weisler ◽  
Torsten Behrens ◽  
Walter J. Horst

To improve nitrogen (N) efficiency in agriculture, integrated N management strategies that take into consideration improved fertilizer, soil, and crop management practices are necessary. This paper reports results of field experiments in which maize (Zea mays L.) and oilseed rape (Brassica napus L.) cultivars were compared with respect to their agronomic N efficiency (yield at a given N supply), N uptake efficiency (N accumulation at a given N supply), and N utilization efficiency (dry matter yield per unit N taken up by the plant). Under conditions of high N supply, significant differences among maize cultivars were found in shoot N uptake, soil nitrate depletion during the growing season, and the related losses of nitrate through leaching after the growing season. Experiments under conditions of reduced N supply indicated a considerable genotypic variation in reproductive yield formation of both maize and oilseed rape. High agronomic efficiency was achieved by a combination of high uptake and utilization efficiency (maize), or exclusively by high uptake efficiency (rape). N-efficient cultivars of both crops were characterized by maintenance of a relatively high N-uptake activity during the reproductive growth phase. In rape this trait was linked with leaf area and photosynthetic activity of leaves. We conclude that growing of N-efficient cultivars may serve as an important element of integrated nutrient management strategies in both low- and high-input agriculture.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 833 ◽  
Author(s):  
Silvia Bachmann-Pfabe ◽  
Klaus J. Dehmer

Potato wild relatives provide a considerable source of variation for important traits in cultivated potato (Solanum tuberosum L.) breeding. This study evaluates the variation of tuber starch content and nitrogen utilization efficiency (NutE) in wild potato germplasm. For the experiments regarding starch content, 28 accessions of ten different tuber-bearing wild Solanum-species were chosen, and in vitro plantlets were raised from seeds. Twenty plantlets (= genotypes) per accession were then cultivated in the greenhouse until natural senescence and tuber starch content was determined. The average tuber starch content across all genotypes tested was 21.7% of fresh mass. Contents above 28% of fresh mass were found in 50 genotypes, belonging to the species S. chacoense, S. commersonii, S. jamesii, and S. pinnatisectum. Subsequently, 22 wild genotypes revealing high tuber starch contents and four modern varieties of cultivated potato were studied as in vitro plantlets under optimal and low N supply (30 and 7.5 mmol L−1 N). Low N supply lead to a genotype-dependent reduction of shoot dry mass between 13 and 46%. The majority of the wild types also reduced root dry mass by 26 to 62%, while others maintained root growth and even exceeded the NutE of the varieties under low N supply. Thus, wild potato germplasm appears superior to cultivars in terms of tuber starch contents and N utilization efficiency, which should be investigated in further studies.


2019 ◽  
Vol 232 ◽  
pp. 88-94 ◽  
Author(s):  
Zheng Liu ◽  
Jia Gao ◽  
Fei Gao ◽  
Peng Liu ◽  
Bin Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document