scholarly journals Genome-Wide Identification of Populus Malectin/Malectin-Like Domain-Containing Proteins and Expression Analyses Reveal Novel Candidates for Signaling and Regulation of Wood Development

2020 ◽  
Vol 11 ◽  
Author(s):  
Vikash Kumar ◽  
Evgeniy N. Donev ◽  
Félix R. Barbut ◽  
Sunita Kushwah ◽  
Chanaka Mannapperuma ◽  
...  

Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF11721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their expression and co-expression networks. P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified here could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation in the xylem and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways. Thus, P. trichocarpa MD genes having different domain organizations comprise many genes with putative foliar defense functions, some of which could be specific to Populus and related species, as well as genes with potential involvement in signaling pathways in other tissues including developing wood.

Author(s):  
Vikash Kumar ◽  
Félix Barbut ◽  
Sunita Kushwah ◽  
Evgeniy N. Donev ◽  
János Urbancsok ◽  
...  

Abstract Background: Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF1721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their in-silico expression and co-expression networks.Results: P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways.Conclusion: P. trichocarpa MD genes exhibit a variety of domain organizations, and include genes apparently specific to Populus, as well as genes with potential involvement in signaling pathways regulating secondary wall formation.


BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 359 ◽  
Author(s):  
Hua Bao ◽  
Eryang Li ◽  
Shawn D Mansfield ◽  
Quentin CB Cronk ◽  
Yousry A El-Kassaby ◽  
...  

2014 ◽  
Author(s):  
Armando Geraldes ◽  
Charles A Hefer ◽  
Arnaud Capron ◽  
Natalia Kolosova ◽  
Felix Martinez-Nuñez ◽  
...  

All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Theory suggests that non-recombining sex-linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole genome scans that the sex-associated region in P. trichocarpa is small and much younger than the age of the genus. This indicates that sex-determination is highly labile in poplar, consistent with recent evidence of “turnover” of sex determination regions in animals. We performed whole genome resequencing of 52 Populus trichocarpa (black cottonwood) and 34 P. balsamifera (balsam poplar) individuals of known sex. Genome-wide association studies (GWAS) in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex-linked region to be ∼100 Kbp. All significant SNPs were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex associated SNPs revealed this to be an XY sex determining system. Estimated divergence times of X and Y haplotype sequences (6-7 MYA) are much more recent than the divergence of P. trichocarpa (poplar) and P. tremuloides (aspen). Consistent with this, in P. tremuloides we found no XY haplotype divergence within the P. trichocarpa sex-determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past.


2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


3 Biotech ◽  
2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Shuang Zhang ◽  
Lina Cao ◽  
Xue Sun ◽  
Jiajie Yu ◽  
Xiuyue Xu ◽  
...  

1972 ◽  
Vol 50 (7) ◽  
pp. 1627-1631 ◽  
Author(s):  
K. S. Bawa ◽  
R. F. Stettler

Female catkin primordia of black cottonwood (Populus trichocarpa T. & G. ex Hook.) were cultured for 70 days on a modified Murashige and Skoog's (1962) medium in vitro. Explants 2–3 mm long, and with bud scales removed, gave the best results, many of them developing floral structures characteristic of the female sex. There was a general tendency to callus formation with increasing age of the culture, occasionally followed by a reversal to vegetative growth. Catkin primordia raised on Wolter's medium without auxin or kinetin, but with 6-benzylaminopurine, and at 250 ft-c for a 16-h photoperiod, proliferated axillary shoots in loco of pistils.


Sign in / Sign up

Export Citation Format

Share Document