wood development
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yamei Zhuang ◽  
Sihui Chen ◽  
Wenjun Lian ◽  
Li Xu ◽  
Dian Wang ◽  
...  

Wood formation of trees is a complex and costly developmental process, whose regulatory network is involved in the protein-protein and protein-DNA interactions. To detect such interactions in wood development, we developed a high-throughput screening system with 517 Gal4-AD-wood-associated transcription factors (TFs) library from Populus alba × P. glandulosa cv “84K.” This system can be used for screening the upstream regulators and interacting proteins of targets by mating-based yeast-one hybrid (Y1H) and yeast-two-hybrid (Y2H) method, respectively. Multiple regulatory modules of lignin biosynthesis were identified based on this Populus system. Five TFs interacted with the 500-bp promoter fragment of PHENYLALANINE AMMONIA-LYASE 2 (PAL2), the first rate-limiting enzyme gene in the lignin biosynthesis pathway, and 10 TFs interacted with PaMYB4/LTF1, a key regulator of lignin biosynthesis. Some of these interactions were further validated by EMSA and BiFC assays. The TF-PaPAL2 promoter interaction and TF-PaMYB4 interaction revealed a complex mechanism governing the regulation of lignin synthesis in wood cells. Our high-throughput Y1H/Y2H screening system may be an efficient tool for studying regulatory network of wood formation in tree species.


2022 ◽  
Vol 9 ◽  
Author(s):  
Congpeng Wang ◽  
Naixu Liu ◽  
Zhao Geng ◽  
Meijing Ji ◽  
Shumin Wang ◽  
...  

Abstract Wood formation involves sequential developmental events requiring the coordination of multiple hormones. Brassinosteroids (BRs) play a key role in wood development, but little is known about the cellular and molecular processes that underlie wood formation in tree species. Here, we generated transgenic poplar lines with edited PdBRI1 genes, which are orthologs of Arabidopsis vascular-enriched BR receptors, and showed how inhibition of BR signaling influences wood development at the mRNA and/or proteome level. Six Populus PdBRI1 genes formed three gene pairs, each of which was highly expressed in basal stems. Simultaneous mutation of PdBRI1–1, −2, −3 and − 6, which are orthologs of the Arabidopsis vascular-enriched BR receptors BRI1, BRL1 and BRL3, resulted in severe growth defects. In particular, the stems of these mutant lines displayed a discontinuous cambial ring and patterning defects in derived secondary vascular tissues. Abnormal cambial formation within the cortical parenchyma was also observed in the stems of pdbri1–1;2;3;6. Transgenic poplar plants expressing edited versions of PdBRI1–1 or PdBRI1–1;2;6 exhibited phenotypic alterations in stem development at 4.5 months of growth, indicating that there is functional redundancy among these PdBRI1 genes. Integrated analysis of the transcriptome and proteome of pdbri1–1;2;3;6 stems revealed differential expression of a number of genes/proteins associated with wood development and hormones. Concordant (16%) and discordant (84%) regulation of mRNA and protein expression, including wood-associated mRNA/protein expression, was found in pdbri1–1;2;3;6 stems. This study found a dual role of BRs in procambial cell division and xylem differentiation and provides insights into the multiple layers of gene regulation that contribute to wood formation in Populus.


IAWA Journal ◽  
2021 ◽  
Vol 42 (4) ◽  
pp. 475-485
Author(s):  
Efrida Basri ◽  
Ratih Damayanti ◽  
Atmawi Darwis ◽  
Saefudin ◽  
Imam Wahyudi

Abstract The Hibiscus macrophyllus tree is widely planted in Indonesia especially on Java Island. It has several advantages to be developed commercially as a community or plantation forest compared to the famous introduced species Falcataria moluccana and Anthocephalus spp., including faster growth, higher wood density, and better stem morphology (straighter, more rounded, and lesser branches). However, information about the basic properties of this wood grown in plantations is limited. This study aimed to investigate the anatomical properties of H. macrophyllus and their variation at three ages (8, 12 and 16 years old), as well as to predict the mature wood development by using radial variation in fiber length, microfibril angle (MFA), and wood density from pith toward the bark as the indicators. The wood samples were obtained from a community forest area at Ciamis Regency, West Java Province. Furthermore, anatomical characteristics were examined through wood slides following the IAWA List, while fibre and vessel element dimensions were measured through macerated specimens prepared by modified Franklin’s method. The MFA was determined by X-Ray Diffraction, while wood density was measured in line with British Standard 373-57. The results showed that the anatomical structures were not influenced by tree age, except for wood porosity, and fibre and vessel element dimensions. The 16-year-old tree tended to be semi-ring-porous, the younger trees were diffuse-porous, while the fiber and vessel element length, as well as the diameter, were decreased. Meanwhile, the wall thickness was increased. The fibre length, MFA, and wood density were useful indicators for wood maturity that seemed to be developed at about 11 years of age.


2021 ◽  
Vol 12 (2) ◽  
pp. 51-59
Author(s):  
‪Handian Purwawangsa ◽  
Maulida Oktaviarini ◽  
Faizal Mutaqin

The private forest is one of alternatives that played an important role in fulfillment of a need raw materials management industry wood and the needs of wood. Development of private forest can improve the people and land revenue increase productivity. Research conducted in sub-district Leuwisadeng, Cigudeg, and Jasinga shows that there are some marketing actors involved in marketing wood of the private forest of them are farmers, traders, and sawmill industries. The marketing of the three actors formed four marketing channels are grouped based marketing actors and average skidding distance. Channels that most efficient among fourth the channels is a channels II with the percentage of farmer’s share as 46.93 % and the ratio of K/B by 5.45.  Types of plants most favored by farmers and consumers is the type of sengon it because sengon having a short, the age of harvest readily grows, and easy cultivation. The consumer likes kind of plant is because sengon have reachable prices, sengon not easily bad condition wood and widely available in market. Key words: bogor, farmer’s share, marketing efficiency rasio, private forest


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 420
Author(s):  
Benas Šilinskas ◽  
Aistė Povilaitienė ◽  
Gintautas Urbaitis ◽  
Marius Aleinikovas ◽  
Iveta Varnagirytė-Kabašinskienė

This study performed a pilot evaluation of the wood quality—defined by a single parameter: dynamic modulus of elasticity (MOEdyn, N mm−2)—of small-leaved lime (Tilia cordata Mill.) trees in urban areas. A search of the literature revealed few studies which examined the specifics of tree wood development in urban areas. Little is known about the potential of wood from urban trees wood of their suitability for the timber industry. In this study, an acoustic velocity measuring system was used for wood quality assessment of small-leaved lime trees. The MOEdyn parameter was evaluated for small-leaved lime trees growing in two urban locations (along the streets, and in an urban park), with an additional sample of forest sites taken as the control. MOEdyn was also assessed for small-leaved lime trees visually assigned to different health classes. The obtained mean values of MOEdyn of 90–120-year old small-leaved lime trees in urban areas ranged between 2492.2 and 2715.8 N mm−2. For younger trees, the values of MOEdyn were lower in the urban areas than in the forest site. Otherwise, the results of the study showed that the small-leaved lime wood samples were of relatively good quality, even if the tree was classified as moderately damaged (which could cause a potential risk to the community). Two alternatives for urban tree management can be envisaged: (1) old trees could be left to grow to maintain the sustainability of an urban area until their natural death, or (2) the wood from selected moderately damaged trees could be used to create wood products, ensuring long-term carbon retention.


2020 ◽  
Vol 11 ◽  
Author(s):  
Vikash Kumar ◽  
Evgeniy N. Donev ◽  
Félix R. Barbut ◽  
Sunita Kushwah ◽  
Chanaka Mannapperuma ◽  
...  

Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF11721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their expression and co-expression networks. P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified here could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation in the xylem and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways. Thus, P. trichocarpa MD genes having different domain organizations comprise many genes with putative foliar defense functions, some of which could be specific to Populus and related species, as well as genes with potential involvement in signaling pathways in other tissues including developing wood.


Plant Biology ◽  
2020 ◽  
Author(s):  
V Chano ◽  
J Sobrino‐Plata ◽  
C Collada ◽  
A Soto

Author(s):  
Vikash Kumar ◽  
Félix Barbut ◽  
Sunita Kushwah ◽  
Evgeniy N. Donev ◽  
János Urbancsok ◽  
...  

Abstract Background: Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF1721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their in-silico expression and co-expression networks.Results: P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways.Conclusion: P. trichocarpa MD genes exhibit a variety of domain organizations, and include genes apparently specific to Populus, as well as genes with potential involvement in signaling pathways regulating secondary wall formation.


2020 ◽  
Vol 182 (4) ◽  
pp. 1800-1801
Author(s):  
Madeleine Seale

2019 ◽  
Vol 11 (17) ◽  
pp. 196
Author(s):  
Maria R. Kanieski ◽  
Franklin Galvão ◽  
Paulo C. Botosso ◽  
Philipe R. C. Soares ◽  
Marcos F. Nicoletti ◽  
...  

Here we conducted an anatomical analysis of vessel elements from woody tissues of Gymnanthes klotzschiana individuals in a remnant of Alluvial Mixed Rain Forest in southern Brazil. This tree is among the species with the highest abundance within these forests. We sampled an area adjacent to a meadow highly impacted by an oil spill of four million liters from Petróleo Brasileiro S. A. The study was aimed at uncovering possible anatomical and structural changes in the wood of G. klotzschiana after an attempt at the decontamination of the area, which was performed by its flooding and extracting the oil that was deposited on the soil surface. Therefore, our sampling was performed in two environments with distinct water table characteristics: (1) with temporary water saturation, and (2) with permanent saturation. Radial samples were collected from an individual from both environments and analyzed through optical microscopy and dendroecological variables, which allowed us to reconstruct the wood development from 1997 to 2010. Our results demonstrated that no significant anatomic changes occurred in the condition with temporary saturation. Conversely, the environment with permanent saturation led to an increase in the frequency of the vessel elements, as a strategy to acclimate to the altered environment. Moreover, it altered the grouping pattern of the vessels, with a gradual increase in the percentage of solitary vessels, which is consistent with environments with more humidity. These results drive our attention for developing more efficient strategies to overcoming natural disasters and diminishing their impact on local biological communities.


Sign in / Sign up

Export Citation Format

Share Document