scholarly journals Mapping and Analysis of a Novel Genic Male Sterility Gene in Watermelon (Citrullus lanatus)

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Dong ◽  
Dewei Wu ◽  
Chen Yan ◽  
Defeng Wu

Seed production is critical for watermelon production, which mostly involves first-generation hybrid varieties. However, watermelon hybrid seed production currently requires complex procedures, including artificial isolation and pollination. Therefore, the development and use of a male-sterile system to generate watermelon hybrids can simplify the process. The scarcity of male-sterile watermelon germplasm resources necessitates the use of molecular breeding methods. Unfortunately, the genes responsible for male sterility in watermelon have not been cloned. Thus, the genetic basis of the male sterility remains unknown. In this study, two DNA pools derived from male-sterile and normal plants in the F2 population were used for whole-genome resequencing. The Illumina high-throughput sequencing resulted in 62.99 Gbp clean reads, with a Q30 of 80% after filtering. On the basis of the SNP index association algorithm, eight candidate regions (0.32 Mb) related to specific traits were detected on chromosome 6. Expression pattern analyses and watermelon transformation studies generated preliminary evidence that Cla006625 encodes a pollen-specific leucine-rich repeat protein (ClaPEX1) influencing the male sterility of watermelon. The identification and use of genic male sterility genes will promote watermelon male sterility research and lay the foundation for the efficient application of seed production technology.

HortScience ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 123-126 ◽  
Author(s):  
X.P. Zhang ◽  
B.B. Rhodes ◽  
W.V. Baird ◽  
H.T. Skorupska ◽  
W.C. Bridges

Hybrid seed production can be facilitated by using male sterility coupled with a seedling marker. This research was initiated to combine the ms male sterility and dg delayed-green seedling marker into watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] lines. Male-sterile plants of the male-sterile line G17AB were crossed with plants of delayed-green breeding line Pale90, which has yellow cotyledons and pale-green, newly developed, true leaves. The double-recessive recombinants, male sterile and delayed green, from the F2 population were backcrossed to the male-fertile plants of G17AB. The pedigree method was used for selection in the progenies. The segregation ratios obtained from F2 and BC1F2 populations suggest that the male-sterile and delayed-green traits are inherited independently and that delayed green is inherited as a single recessive nuclear gene. Two male-sterile watermelon lines with delayed-green seedling marker have been developed. These lines will provide a convenient way to introduce male sterility and the delayed-green seedling marker into various genetic backgrounds. These two lines can be used for testing the efficiency of a new, hybrid, watermelon, seed production system.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1168e-1168 ◽  
Author(s):  
Edward C. Tigchelaar

The coupling phase linkages have been synthesized between the gene aw (without anthocyanin) and the male sterile gene ms15 (and its alleles ms26, ms47, and an Israeli source of male sterility). Less than 2 map units separate aw and ms15 on chromosome 2, providing a convenient seedling marker gene to rapidly identify male sterility for both inbred development and hybrid seed production. The seedling marker also provides a convenient marker to rapidly assess hybrid seed purity. Unique features of each of the alleles involved in male sterility and their use in inbred and hybrid development will be described.


2004 ◽  
Vol 129 (6) ◽  
pp. 819-825 ◽  
Author(s):  
Soon O. Park ◽  
Kevin M. Crosby ◽  
Rongfeng Huang ◽  
T. Erik Mirkov

Male sterility is an important trait of melon in F1 hybrid seed production. Molecular markers linked to a male-sterile gene would be useful in transferring male sterility into fertile melon cultivars and breeding lines. However, markers linked to the ms-3 gene for male sterility present in melon have not been reported. Our objectives were to identify randomly amplified polymorphic DNA (RAPD) markers linked to the ms-3 gene controlling male sterility using bulked segregant analysis in an F2 population from the melon cross of line ms-3 (male-sterile) × `TAM Dulce' (male-fertile), convert the most tightly linked RAPD marker to the ms-3 gene into a sequence characterized amplified region (SCAR) marker based on a specific forward and reverse 20-mer primer pair, and confirm the linkage of the RAPD and SCAR markers with the ms-3 gene in an F2 population from the cross of line ms-3 × `Mission' (male-fertile). A single recessive gene controlling male sterility was found in F2 individuals and confirmed in F3 families. Two RAPD markers that displayed an amplified DNA fragment in the male-sterile bulk were detected to be linked to the ms-3 gene in the F2 population from the cross of line ms-3 × `TAM Dulce'. RAPD marker OAM08.650 was closely linked to the ms-3 gene at 2.1 cM. SCAR marker SOAM08.644 was developed on the basis of the specific primer pair designed from the sequence of the RAPD marker OAM08.650. The linked RAPD and SCAR markers were confirmed in the F2 population from the cross of line ms-3 × `Mission' to be consistently linked to the ms-3 gene at 5.2 cM. These markers were also present in 22 heterozygous fertile F1 plants having the ms-3 gene. The RAPD and SCAR markers linked to the ms-3 gene identified, and confirmed here could be utilized for backcrossing of male sterility into elite melon cultivars and lines for use as parents for F1 hybrid seed production.


2021 ◽  
Vol 22 (12) ◽  
pp. 6388
Author(s):  
Miaomiao Hao ◽  
Wenlong Yang ◽  
Weiwen Lu ◽  
Linhe Sun ◽  
Muhammad Shoaib ◽  
...  

Heterosis utilization is very important in hybrid seed production. An AL-type cytoplasmic male sterile (CMS) line has been used in wheat-hybrid seed production, but its sterility mechanism has not been explored. In the present study, we sequenced and verified the candidate CMS gene in the AL-type sterile line (AL18A) and its maintainer line (AL18B). In the late uni-nucleate stage, the tapetum cells of AL18A showed delayed programmed cell death (PCD) and termination of microspore at the bi-nucleate stage. As compared to AL18B, the AL18A line produced 100% aborted pollens. The mitochondrial genomes of AL18A and AL18B were sequenced using the next generation sequencing such as Hiseq and PacBio. It was found that the mitochondrial genome of AL18A had 99% similarity with that of Triticum timopheevii, AL18B was identical to that of Triticum aestivum cv. Chinese Yumai. Based on transmembrane structure prediction, 12 orfs were selected as candidate CMS genes, including a previously suggested orf256. Only the lines harboring orf279 showed sterility in the transgenic Arabidopsis system, indicating that orf279 is the CMS gene in the AL-type wheat CMS lines. These results provide a theoretical basis and data support to further analyze the mechanism of AL-type cytoplasmic male sterility in wheat.


2019 ◽  
Vol 40 (04) ◽  
Author(s):  
Pramod Sharma ◽  
Sunil A Nair ◽  
Payal Sharma

Male sterility is described as absence of functional pollen grains in hermaphrodite flowers facilitating large scale production of hybrid seeds in vegetable crops. It eases hybrid seed production at commercial level in crops like tomato, chilli, capsicum, carrot, onion, cabbage, cauliflower and cucurbits. Male sterility would reduce the cost of hybrid seed production by limiting the labour making it efficient and economical. Incorporation of biotechnological tools in conventional plant breeding techniques would aid the breeders in limiting the drawbacks surrounding exploitation of male sterility for development of new hybrids. The present review is an attempt to summarize and to know the commercial utilization of male sterile line in hybrid seed production of vegetables.


Author(s):  
Georgeta Oroian ◽  
G. Morar ◽  
I. Haş ◽  
Voichiţa Haş

The use of cytoplasmatic male-sterility in maize seed production contributes to increase economical efficiency and to obtain great genetical seeds. Through this theme one has followed the realization of a comparative study between some hybrids obtained to Turda on C and T cytoplasm their homologues, developed with normal and through the castration of the maternal parents. The researches aimed mainly the phenotypic and genotypic variability of the hybrids, the degree of male-sterility and the capacity of production, in phytotechnic conditions in different densities.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 439 ◽  
Author(s):  
Maksim S. Makarenko ◽  
Alexander V. Usatov ◽  
Tatiana V. Tatarinova ◽  
Kirill V. Azarin ◽  
Maria D. Logacheva ◽  
...  

This study provides insights into the flexibility of the mitochondrial genome in sunflower (Helianthus annuus L.) as well as into the causes of ANN2-type cytoplasmic male sterility (CMS). De novo assembly of the mitochondrial genome of male-sterile HA89(ANN2) sunflower line was performed using high-throughput sequencing technologies. Analysis of CMS ANN2 mitochondrial DNA sequence revealed the following reorganization events: twelve rearrangements, seven insertions, and nine deletions. Comparisons of coding sequences from the male-sterile line with the male-fertile line identified a deletion of orf777 and seven new transcriptionally active open reading frames (ORFs): orf324, orf327, orf345, orf558, orf891, orf933, orf1197. Three of these ORFs represent chimeric genes involving atp6 (orf1197), cox2 (orf558), and nad6 (orf891). In addition, orf558, orf891, orf1197, as well as orf933, encode proteins containing membrane domain(s), making them the most likely candidate genes for CMS development in ANN2. Although the investigated CMS phenotype may be caused by simultaneous action of several candidate genes, we assume that orf1197 plays a major role in developing male sterility in ANN2. Comparative analysis of mitogenome organization in sunflower lines representing different CMS sources also allowed identification of reorganization hot spots in the mitochondrial genome of sunflower.


Sign in / Sign up

Export Citation Format

Share Document