scholarly journals Physiological Roles of Flavodiiron Proteins and Photorespiration in the Liverwort Marchantia polymorpha

2021 ◽  
Vol 12 ◽  
Author(s):  
Ginga Shimakawa ◽  
Hitomi Hanawa ◽  
Shinya Wada ◽  
Guy T. Hanke ◽  
Yusuke Matsuda ◽  
...  

Against the potential risk in oxygenic photosynthesis, that is, the generation of reactive oxygen species, photosynthetic electron transport needs to be regulated in response to environmental fluctuations. One of the most important regulations is keeping the reaction center chlorophyll (P700) of photosystem I in its oxidized form in excess light conditions. The oxidation of P700 is supported by dissipating excess electrons safely to O2, and we previously found that the molecular mechanism of the alternative electron sink is changed from flavodiiron proteins (FLV) to photorespiration in the evolutionary history from cyanobacteria to plants. However, the overall picture of the regulation of photosynthetic electron transport is still not clear in bryophytes, the evolutionary intermediates. Here, we investigated the physiological roles of FLV and photorespiration for P700 oxidation in the liverwort Marchantia polymorpha by using the mutants deficient in FLV (flv1) at different O2 partial pressures. The effective quantum yield of photosystem II significantly decreased at 2kPa O2 in flv1, indicating that photorespiration functions as the electron sink. Nevertheless, it was clear from the phenotype of flv1 that FLV was dominant for P700 oxidation in M. polymorpha. These data suggested that photorespiration has yet not replaced FLV in functioning for P700 oxidation in the basal land plant probably because of the lower contribution to lumen acidification, compared with FLV, as reflected in the results of electrochromic shift analysis.

2016 ◽  
Vol 113 (43) ◽  
pp. 12322-12327 ◽  
Author(s):  
Caterina Gerotto ◽  
Alessandro Alboresi ◽  
Andrea Meneghesso ◽  
Martina Jokel ◽  
Marjaana Suorsa ◽  
...  

Photosynthetic organisms support cell metabolism by harvesting sunlight to fuel the photosynthetic electron transport. The flow of excitation energy and electrons in the photosynthetic apparatus needs to be continuously modulated to respond to dynamics of environmental conditions, and Flavodiiron (FLV) proteins are seminal components of this regulatory machinery in cyanobacteria. FLVs were lost during evolution by flowering plants, but are still present in nonvascular plants such as Physcomitrella patens. We generated P. patens mutants depleted in FLV proteins, showing their function as an electron sink downstream of photosystem I for the first seconds after a change in light intensity. flv knock-out plants showed impaired growth and photosystem I photoinhibition when exposed to fluctuating light, demonstrating FLV’s biological role as a safety valve from excess electrons on illumination changes. The lack of FLVs was partially compensated for by an increased cyclic electron transport, suggesting that in flowering plants, the FLV’s role was taken by other alternative electron routes.


1991 ◽  
Vol 46 (7-8) ◽  
pp. 563-568 ◽  
Author(s):  
Fumihiko Sato ◽  
Yasuyuki Yamada ◽  
Sang Soo Kwak ◽  
Katsunori Ichinose ◽  
Mitsuhiro Kishida ◽  
...  

Abstract The responses of photoautotrophic (PA) cultured cells of tobacco (Nicotiana tabacum cv. Samsun NN) and liverwort (Marchantia polymorpha L.) to thirty-eight cyclohexanedione derivatives were surveyed. Each derivative was also tested for inhibitory activity on photosynthetic electron transport (PET), using isolated thylakoids, and herbicidal activity, using seed­ lings and mature plants. Comparison of the results from the different assays showed that the responses of PA cells to each com pound correlated more closely with the responses of seed­ lings and mature plants than did the results of the Hill reaction assays. Our findings suggest that PA cultured cells would be a suitable screening material for identifying potential herbicides with PET-inhibiting activity.


Author(s):  
Suresh Tula ◽  
Fahimeh Shahinnia ◽  
Michael Melzer ◽  
Twan Rutten ◽  
Rodrigo Gómez ◽  
...  

AbstractThe ability of plants to maintain photosynthesis in a dynamically changing environment is of central importance for their growth. As their photosynthetic machinery typically cannot adapt rapidly to fluctuations in the intensity of radiation, the level of photosynthetic efficiency is not always optimal. Cyanobacteria, algae, non-vascular plants (mosses and liverworts) and gymnosperms all produce flavodiirons (Flvs), a class of proteins not represented in the angiosperms; these proteins act to mitigate the photoinhibition of photosystem I. Here, genes specifying two cyanobacterial Flvs have been expressed in the chloroplasts of Arabidopsis thaliana in an attempt to improve the robustness of Photosystem I (PSI). The expression of Flv1 and Flv3 together shown to enhance the efficiency of the utilization of light and to boost the plant’s capacity to accumulate biomass. Based on an assessment of the chlorophyll fluorescence in the transgenic plants, the implication was that photosynthetic activity (including electron transport flow and non-photochemical quenching during a dark-to-light transition) was initiated earlier in the transgenic than in wild type plants. The improved photosynthetic performance of the transgenics was accompanied by an increased production of ATP, an acceleration of carbohydrate metabolism and a more pronounced partitioning of sucrose into starch. The indications are that Flvs are able to establish an efficient electron sink downstream of PSI, thereby ensuring that the photosynthetic electron transport chain remains in a more oxidized state. The expression of Flvs in a plant acts to both protect photosynthesis and to control the ATP/NADPH ratio; together, their presence is beneficial for the plant’s growth potential.


1980 ◽  
Vol 35 (9-10) ◽  
pp. 770-775 ◽  
Author(s):  
E. F. Elstner ◽  
H. P. Fischer ◽  
W. Osswald ◽  
G. Kwiatkowski

Abstract Oxygen reduction by chloroplast lamellae is catalyzed by low potential redox dyes with E′0 values between -0 .3 8 V and -0 .6 V. Compounds of E′0 values of -0 .6 7 V and lower are inactive. In subchloroplast particles with an active photosystem I but devoid of photosynthetic electron transport between the two photosystems, the active redox compounds enhance chlorophyll bleaching, superoxide formation and ethane production independent on exogenous substrates or electron donors. The activities of these compounds decrease with decreasing redox potential, with one exception: 1-methyl-4,4′-bipyridini urn bromide with an E′0 value of lower -1 V (and thus no electron acceptor of photosystem I in chloroplast lamellae with intact electron transport) stimulates light dependent superoxide formation and unsaturated fatty acid peroxidation in sub­ chloroplast particles, maximal rates appearing after almost complete chlorophyll bleaching. Since this activity is not visible with compounds with redox potentials below -0 .6 V lacking the nitrogen atom at the 1-position of the pyridinium substituent, we assume that 1 -methyl-4,4′-bi-pyridinium bromide is “activated” by a yet unknown light reaction.


BIOspektrum ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 208-210
Author(s):  
Marc M. Nowaczyk ◽  
Hanna C. Grimm ◽  
Leen Assil-Companioni ◽  
Robert Kourist

AbstractThe highly optimized natural process of oxygenic photosynthesis leads to the formation of redox equivalents, such as NADPH, that can be used to fuel heterologous biotransformations in phototrophic microorganisms. We investigated the reduction of 2-methylmaleimide by the ene-reductase YqjM in the cyanobacterium Synechocystis sp. PCC 6803 and doubled the productivity of the cells by inactivating flavodiironproteins (FDPs) as competing electron sink under self-shading conditions, reaching 18.3 mmol h−1 L−1.


Sign in / Sign up

Export Citation Format

Share Document