scholarly journals Position Validation of the Dwarfing Gene Dw6 in Oat (Avena sativa L.) and Its Correlated Effects on Agronomic Traits

2021 ◽  
Vol 12 ◽  
Author(s):  
Honghai Yan ◽  
Kaiquan Yu ◽  
Yinghong Xu ◽  
Pingping Zhou ◽  
Jun Zhao ◽  
...  

An F6:8 recombinant inbred line (RIL) population derived from the cross between WAOAT2132 (Dw6) and Caracas along with the two parents were used to evaluate the genetic effects of Dw6 dwarfing gene on plant height and other agronomic traits in oat (Avena sativa L.) across three environments, and develop closely linked markers for marker-assisted selection (MAS) for Dw6. The two parents differed in all investigated agronomic traits except for the number of whorls. The RIL lines showed a bimodal distribution for plant height in all three tested environments, supporting the height of this population was controlled by a single gene. Dw6 significantly reduced plant height (37.66∼44.29%) and panicle length (13.99∼22.10%) but without compromising the coleoptile length which was often positively associated with the reduced stature caused by dwarfing genes. Dw6 has also strong negative effects on hundred kernel weight (14.00∼29.55%), and kernel length (4.21∼9.47%), whereas the effects of Dw6 on the kernel width were not uniform across three environments. By contrast, lines with Dw6 produced more productive tillers (10.11∼10.53%) than lines without Dw6. All these together suggested the potential yield penalty associated with Dw6 might be partially due to the decrease of kernel weight which is attributed largely to the reduction of kernel length. Eighty-one simple sequence repeat (SSR) primer pairs from chromosome 6D were tested, five of them were polymorphic in two parents and in two contrasting bulks, confirming the 6D location of Dw6. By using the five polymorphic markers, Dw6 was mapped to an interval of 1.0 cM flanked by markers SSR83 and SSR120. Caution should be applied in using this information since maker order conflicts were observed. The close linkages of these two markers to Dw6 were further validated in a range of oat lines. The newly developed markers will provide a solid basis for future efforts both in the identification of Dw6 in oat germplasm and in the determination of the nature of the gene through positional cloning.

BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jian Ma ◽  
Han Zhang ◽  
Shuiqin Li ◽  
Yaya Zou ◽  
Ting Li ◽  
...  

Abstract Background Kernel length (KL), kernel width (KW) and thousand-kernel weight (TKW) are key agronomic traits in wheat breeding. Chuannong16 (‘CN16’) is a commercial cultivar with significantly longer kernels than the line ‘20828’. To identify and characterize potential alleles from CN16 controlling KL, the previously developed recombinant inbred line (RIL) population derived from the cross ‘20828’ × ‘CN16’ and the genetic map constructed by the Wheat55K SNP array and SSR markers were used to perform quantitative trait locus/loci (QTL) analyses for kernel traits. Results A total of 11 putative QTL associated with kernel traits were identified and they were located on chromosomes 1A (2 QTL), 2B (2 QTL), 2D (3 QTL), 3D, 4A, 6A, and 7A, respectively. Among them, three major QTL, QKL.sicau-2D, QKW.sicau-2D and QTKW.sicau-2D, controlling KL, KW and TKW, respectively, were detected in three different environments. Respectively, they explained 10.88–18.85%, 17.21–21.49% and 10.01–23.20% of the phenotypic variance. Further, they were genetically mapped in the same interval on chromosome 2DS. A previously developed kompetitive allele-specific PCR (KASP) marker KASP-AX-94721936 was integrated in the genetic map and QTL re-mapping finally located the three major QTL in a 1- cM region flanked by AX-111096297 and KASP-AX-94721936. Another two co-located QTL intervals for KL and TKW were also identified. A few predicted genes involved in regulation of kernel growth and development were identified in the intervals of these identified QTL. Significant relationships between kernel traits and spikelet number per spike and anthesis date were detected and discussed. Conclusions Three major and stably expressed QTL associated with KL, KW, and TKW were identified. A KASP marker tightly linked to these three major QTL was integrated. These findings provide information for subsequent fine mapping and cloning the three co-localized major QTL for kernel traits.


Author(s):  
Soleman M. Al-Otayk

The present study was carried out to evaluate agronomic traits and assessment of genetic variability of some wheat genotypes at Qassim region, Saudi Arabia', during 2010/11 and2011/12 seasons. Fourteen wheat genotypes including five bread wheat and nine durum wheat genotypes were evaluated in randomized complete block design with three replications. The genotypes were evaluated for ten different yield contributing characters viz., days to heading, days to maturity, grain filling period, grain filling rate, plant height, number of spikes m-2, kernels spike-1, 1000-kernel weight, grain yield and straw yield. The combined analysis of variance indicated the presence of significant differences between years for most characters. The genotypes exhibited significant variation for all the characters studied indicating considerable amount of variation among genotypes for each character. Maximum coefficient of variation was observed for number of spikes m-2 (17%), while minimum value was found for days to maturity. Four genotypes produced maximum grain yield and statistically similar, out of them two bread wheat genotypes (AC-3 and SD12) and the other two were durum wheat (AC-5 and BS-1). The genotypes AC-3, AC-5 and BS-1 had higher grain yield and stable in performance across seasons. The estimation of phenotypic coefficient of variation in all the traits studied was greater than those of the genotypic coefficient of variation. High heritability estimates (> 0.5) were observed for days to heading, days to maturity, and plant height, while the other characters recorded low to moderate heritability. The high GA % for plant height and days to heading (day) was accompanied by high heritability estimates, which indicated that heritability is mainly due to genetic variance. Comparatively high expected genetic advances were observed for grain yield components such as number of kernels spike-1 and 1000-kernel weight. Grain yield had the low heritability estimate with a relatively intermediate value for expected genetic advance. The results of principle component analysis (PCA) indicated that the superior durum wheat genotypes for grain yield in the two seasons (AC-5 and BS-1) are clustered in group II (Fig. 2). Also, the superior two bread wheat genotypes (AC-3 and SD12) were in group I. Therefore, it could be future breeding program to develop new high yielding genotypes in bread and durum wheat.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10733
Author(s):  
Akerke Amalova ◽  
Saule Abugalieva ◽  
Vladimir Chudinov ◽  
Grigoriy Sereda ◽  
Laura Tokhetova ◽  
...  

Background The success of wheat production is largely dependent on local breeding projects that focus on the development of high-yielding cultivars with the use of novel molecular tools. One strategy for improving wheat productivity involves the deployment of diverse germplasms with a high potential yield. An important factor for achieving success involves the dissection of quantitative trait loci (QTLs) for complex agronomic traits, such as grain yield components, in targeted environments for wheat growth. Methods In this study, we tested the United Kingdom (UK) spring set of the doubled haploid (DH) reference population derived from the cross between two British cultivars, Avalon (winter wheat) and Cadenza (spring wheat), in the Northern, Central, and Southern regions (Karabalyk, Karaganda, Kyzylorda) of Kazakhstan over three years (2013–2015). The DH population has previously been genotyped by UK scientists using 3647 polymorphic DNA markers. The list of tested traits includes the heading time, seed maturation time, plant height, spike length, productive tillering, number of kernels per spike, number of kernels per meter, thousand kernel weight, and yield per square meter. Windows QTL Cartographer was applied for QTL mapping using the composite interval mapping method. Results In total, 83 out of 232 QTLs were identified as stable QTLs from at least two environments. A literature survey suggests that 40 QTLs had previously been reported elsewhere, indicating that this study identified 43 QTLs that are presumably novel marker-trait associations (MTA) for these environments. Hence, the phenotyping of the DH population in new environments led to the discovery of novel MTAs. The identified SNP markers associated with agronomic traits in the DH population could be successfully used in local Kazakh breeding projects for the improvement of wheat productivity.


2001 ◽  
Vol 52 (12) ◽  
pp. 1221 ◽  
Author(s):  
G. J. Rebetzke ◽  
R. Appels ◽  
A. D. Morrison ◽  
R. A. Richards ◽  
G. McDonald ◽  
...  

The Norin-10 dwarfing genes, Rht-B1b (Rht1) and Rht-D1b (Rht2), are commonly used to reduce plant height and increase grain yield in wheat breeding programs. These dwarfing genes lower sensitivity of vegetative tissue to endogenous gibberellin to reduce cell and subsequent stem elongation. This reduction in cell elongation capacity reportedly results in a concomitant reduction in coleoptile length and early vigour (leaf area) thereby affecting seedling establishment and growth. A detailed genetic map from a cross between tall Halberd (Rht-B1a) and semidwarf Cranbrook (Rht-B1b) wheat cultivars was used to assess genetic factors affecting seedling growth. Parental and 150 doubled haploid progeny lines were characterised for seedling and height-related traits in controlled and field environments. Genotypic variation was large and predominantly under additive genetic control with evidence for transgressive segregation for some traits. Narrow-sense heritabilities were moderate to high (h2 = 0.31–0.91) indicating a strong genetic basis for differences between progeny. Molecular marker analyses identified a number of significant (P < 0.05) quantitative trait loci (QTL) for each trait. A major QTL, mapping directly to the Rht-B1 locus on chromosome arm 4BS, accounted for up to 49% of the genotypic variance in peduncle length and plant height, and 27–45% of the genotypic variance in coleoptile length across different temperatures. Another QTL, located close to the RFLP marker XksuC2 on the long arm of chromosome 4B, accounted for 15–27% of the genotypic variance in coleoptile length. The influence of the XksuC2-linked QTL on coleoptile length was greatest at 19˚C and decreased with cooler temperatures. The same QTL affected reductions in leaf size, and both coleoptile tiller size and presence to affect overall seedling vigour. There was also some evidence for epistatic interactions influencing coleoptile tiller growth. Reductions in plant size at the Rht-B1b and XksuC2 loci were associated with presence of the Cranbrook 4B allele. The negative genetic effect of the Rht-B1b dwarfing gene on early growth of wheat confirms phenotypic evidence of a pleiotropic effect of Rht-B1b on establishment and early vigour. Genetic increases in coleoptile length and early leaf area development are likely to be limited in wheat populations containing the Rht-B1b dwarfing gene.


Genetics ◽  
1973 ◽  
Vol 75 (3) ◽  
pp. 531-539
Author(s):  
G N Fick ◽  
C O Qualset

ABSTRACT The genetic control of plant height was studied in crosses of four spring wheats involving the standard height variety Ramona 50 and short-statured selections Olesen, D6301, and D6899. Data from parent, F1, F2, and F3 populations indicated that four independently segregating loci account for most of the differences among the four varieties. Two major genes of a highly recessive nature condition reduced height in Olesen and the Norin 10 derivative D6301. Olesen also carries a third dwarfing gene which is partially dominant in its effects over genes for tallness. This gene, or a gene that acts in a similar manner, is also present in the standard height variety Ramona 50. Dwarfing in D6899, a derivative of Tom Thumb, is controlled primarily by a single gene with mainly additive effects which is not present in any of the other three varieties. Genetic components estimated from generation means (parental, F1, F2, F3, and backcross) indicated that additive gene effects were the major component of variation in four of the six crosses, and of similar magnitude to dominance effects in another cross. The primary source of genetic variation in the cross Olesen × D6899 was due to epistasis with both additive × additive and dominance × dominance effects of major importance. The results of the generation mean analyses were consistent with the models for major-gene control of plant height based on segregation patterns.


2002 ◽  
Vol 127 (5) ◽  
pp. 793-797 ◽  
Author(s):  
T.E. Dickert ◽  
W.F. Tracy

Heterosis in corn (Zea mays L.) usually results in earlier flowering, larger plants, and increased yield. In extremely early sweet corn the effect of heterosis on flowering time may be reduced or eliminated due to developmental and physiological requirements for vegetative growth before the transition to reproductive phase. The objective of this study was to determine the level of heterosis and the combining ability for flowering time and other agronomic traits in a diallel cross of six very early open-pollinated sweet corn cultivars. The diallel was grown in 1995 and 1996. Hybrids and parents averaged over hybrids differed for silk date, plant height, ear height, 10-ear weight, ear length, and 100-kernel weight but did not differ for row number and ear width. Heterosis for silk date was significant, but the difference between parents and hybrids was very small, 0.5 day. No hybrids were earlier than the earliest parent, and average midparent heterosis was -0.8%. In contrast midparent heterosis was significant and relatively high for 100-kernel weight (10.0%), ear length (12.9%), ear height (8.6%), plant height (9.0%), and 10-ear weight (28.2%). The traits with low heterosis had very high general combining ability/specific combining ability ratios while these ratios were much smaller in traits with high heterosis. Heterosis for many of the traits, including 10-ear weight, was higher than published values. Conversely, heterosis for flowering time was small, compared to other traits in this study and to published values for silk date, indicating that this extremely early germplasm may be at or near the limit for flowering time under the photoperiod and temperatures typical of summer in Madison, Wis. (43.05°N, 89.31°W).


2019 ◽  
Author(s):  
Jian Ma ◽  
Han Zhang ◽  
Shuiqin Li ◽  
Yaya Zou ◽  
Ting Li ◽  
...  

Abstract Background Kernel length (KL), kernel width (KW) and thousand-kernel weight (TKW) are key agronomic traits in wheat breeding. Chuannong16 (‘CN16’) is a commercial cultivar with significantly longer kernels that the line ‘20828’. To identify and characterize potential alleles from CN16 controlling KL, the previously developed recombinant inbred line (RIL) population derived from the cross ‘20828’ × ‘CN16’ and the genetic map constructed by the Wheat55K SNP array and SSR markers were used to perform quantitative trait locus/loci (QTL) analyses for kernel traits.Results A total of 11 putative QTL associated with kernel traits were identified and they were located on chromosomes 1A (2 QTL), 2B (2 QTL), 2D (3 QTL), 3D, 4A, 6A, and 7A, respectively. Among them, three major QTL, QKL.sicau-2D , QKW.sicau-2D and QTKW.sicau-2D , controlling KL, KW and TKW, respectively, were detected in three different environments. Respectively, they explained 10.88-18.85%, 17.21-21.49% and 10.01-23.20% of the phenotypic variance. Further, they were genetically mapped in the same interval on chromosome 2DS. A previously developed kompetitive allele-specific PCR (KASP) marker KASP-AX-94721936 was integrated in the genetic map and QTL re-mapping finally located the three major QTL in a 1- cM region flanked by AX-111096297 and KASP-AX-94721936 . Another two co-located QTL intervals for KL and TKW were also identified. A few predicated genes involved in regulation of kernel growth and development were identified in the intervals of these identified QTL. Significant relationships between kernel traits and spikelet number per spike and anthesis date were detected and discussed.Conclusions Three major and stably expressed QTL associated with KL, KW, and TKW were identified. A KASP marker tightly linked to these three major QTL was integrated. These findings provide information for subsequent fine mapping and cloning the three co-localized major QTL for kernel traits.


1969 ◽  
Vol 11 (1) ◽  
pp. 199-208 ◽  
Author(s):  
George H. L. Liang ◽  
T. L. Walter ◽  
C. D. Nickell ◽  
Y. O. Koh

Heritability was estimated for 12 agronomic traits in two segregating grain sorghum populations in F3 and F4 generations by parent-offspring regression, parent-offspring correlation, and variance component methods. Half bloom, leaf number, and plant height were most heritable in both populations; head number was least heritable. Grain yield, head weight, kernel number, peduncle diameter, germination percentage, and threshing percentage had medium heritability values. Kernel weight and protein percentage were highly heritable in one population but less heritable in the other.Estimates of genetic correlations showed grain yield positively and strongly correlated with head weight, kernel number, half bloom, leaf number, and plant height, but negatively correlated with germination and protein percentages.Selection indexes constructed using various combinations demonstrated that selecting for yield could be more efficient if combinations other than or in addition to yield were utilized. Selection indexes were less effective in selecting for protein when protein was not included in the index.


2017 ◽  
Vol 44 (5) ◽  
pp. 525 ◽  
Author(s):  
Adinda P. Derkx ◽  
Carol A. Harding ◽  
Asemeh Miraghazadeh ◽  
Peter M. Chandler

A suppressor screen using the dwarf Rht-B1c Della mutant of wheat (Triticum aestivum L.) led to the isolation of overgrowth mutants, which retained the original dwarfing gene but grew at a faster rate because of a new mutation elsewhere in that gene. Forty-six alleles were identified, which included amino acid substitutions, premature stop codons, and splice site alterations. The sites of amino acid substitution were primarily localised around conserved motifs in the DELLA protein, and these mutants showed a wide range in their extent of growth recovery (dwarf, semidwarf, tall). Detailed growth comparisons were made on a wide height range of backcrossed overgrowth alleles, comparing stem and spike growth, leaf size, tillering, phenological development, coleoptile length, grain dormancy and grain yield. There were large and reproducible differences between alleles for some traits, whereas others were largely unaffected or varied with growth conditions. Some of the overgrowth alleles offer promise as alternatives to the Rht-B1b and Rht-D1b dwarfing genes, allowing a wider range of height control, improved grain dormancy and equivalent grain yield. The collection of mutants will also be valuable as a resource to study the effect of height on different physiological or agronomic traits, and in elucidating DELLA protein function.


Sign in / Sign up

Export Citation Format

Share Document