scholarly journals Evaluation of agronomic traits and assessment of genetic variability in some popular wheat genotypes cultivated in Saudi Arabia

Author(s):  
Soleman M. Al-Otayk

The present study was carried out to evaluate agronomic traits and assessment of genetic variability of some wheat genotypes at Qassim region, Saudi Arabia', during 2010/11 and2011/12 seasons. Fourteen wheat genotypes including five bread wheat and nine durum wheat genotypes were evaluated in randomized complete block design with three replications. The genotypes were evaluated for ten different yield contributing characters viz., days to heading, days to maturity, grain filling period, grain filling rate, plant height, number of spikes m-2, kernels spike-1, 1000-kernel weight, grain yield and straw yield. The combined analysis of variance indicated the presence of significant differences between years for most characters. The genotypes exhibited significant variation for all the characters studied indicating considerable amount of variation among genotypes for each character. Maximum coefficient of variation was observed for number of spikes m-2 (17%), while minimum value was found for days to maturity. Four genotypes produced maximum grain yield and statistically similar, out of them two bread wheat genotypes (AC-3 and SD12) and the other two were durum wheat (AC-5 and BS-1). The genotypes AC-3, AC-5 and BS-1 had higher grain yield and stable in performance across seasons. The estimation of phenotypic coefficient of variation in all the traits studied was greater than those of the genotypic coefficient of variation. High heritability estimates (> 0.5) were observed for days to heading, days to maturity, and plant height, while the other characters recorded low to moderate heritability. The high GA % for plant height and days to heading (day) was accompanied by high heritability estimates, which indicated that heritability is mainly due to genetic variance. Comparatively high expected genetic advances were observed for grain yield components such as number of kernels spike-1 and 1000-kernel weight. Grain yield had the low heritability estimate with a relatively intermediate value for expected genetic advance. The results of principle component analysis (PCA) indicated that the superior durum wheat genotypes for grain yield in the two seasons (AC-5 and BS-1) are clustered in group II (Fig. 2). Also, the superior two bread wheat genotypes (AC-3 and SD12) were in group I. Therefore, it could be future breeding program to develop new high yielding genotypes in bread and durum wheat.

2020 ◽  
Vol 12 (4) ◽  
pp. 301-311
Author(s):  
G. Gerema ◽  
D. Lule ◽  
F. Lemessa ◽  
T. Mekonnen

Abstract. The present study was conducted to assess the nature and magnitude of genetic variability and traits association of bread wheat genotypes for yield and related traits. A total of 180 genotypes were evaluated in alpha lattice design with three replications in 2017/18 cropping season. Data for 10 quantitative traits were collected and subjected to analysis of variance. The result from the analysis of variance revealed highly significant variability observed among genotypes for all traits studied. Phenotypic coefficient of variation (PCV) is superior over genotypic coefficient of variation (GCV) for most traits but narrow variations were found between PCV and GCV for most of the traits. Heritability in broad sense and genetic advance as percent of the mean (GA%) were relatively higher for Kernels per spike and grain filling period. Grain yield showed positive and highly significant (p≤0.01) association with number of tillers, kernel per spike and plant height both on genotypic and phenotypic levels.The path coefficient analysis showed that spike length, plant height and kernels per spike had positive direct effect on grain yield on both genotypic and phenotypic levels. Divergence analysis (D2) grouped the total test germplasm into 10 clusters. Among those, clusters IV and IX showed the highest genetic distance and thus the possibility to develop segregating populations upon the crossing of widely related genotypes in those clusters. The results could help researches to utilize the most promising wheat genotypes of this study in future breeding programmes for enhancing desirable traits.


2021 ◽  
Vol 4 (2) ◽  
pp. 303-315
Author(s):  
Deepak Pandey ◽  
Khem Raj Pant ◽  
Biswas Raj Bastola ◽  
Rabin Giri ◽  
Suman Bohara ◽  
...  

Thirty four percent of the total wheat cultivated area is under rain-fed condition in Nepal and that of the Terai is nineteen percent. The objective of this study was to develop drought tolerant and high yielding varieties of wheat for timely sown rain-fed environments. Coordinated Varietal trial (CVT) was carried out in normal wheat growing season during 2016/17 and 2017/18. The research was conducted at five locations (Rampur, Bhairahawa, Doti, Jitpur and Nepalgunj) of five research stations of Nepal Agricultural Research Council (NARC) throughout the Terai region in alpha lattice design with two replications. Data on different yield attributing traits were recorded. In the CVT-TTL 2016/17 highly significant difference (p<0.01) among the genotypes was found for days to heading, days to maturity, plant height, number of grains per spike and thousand kernel weight and significant difference (p<0.05) for grain yield. The highest grain yield was observed in NL 1326 (2954 kg/ha) which was followed by NL 1327 (2819 kg/ha), NL 1211 (2719 kg/ha), NL1202 (2683 kg/ha), BL 4707 (2654 kg/ha) and BL 4708 (2652 kg/ha).  Similarly, in CVT-TTL 2017/18, highly significant difference (p<0.01) among the genotypes was observed for the days to heading, days to maturity and plant height and non-significant different for number of grains per spike, grain yield and TGW.  However, Genotype by Environment (G x E) was found highly significant (p<0.01) for the days to heading, plant height, grain yield and TGW and significant different (p<0.05) for number of grains per spike. The highest grain yield was obtained in NL1322 (2305 kg/ha) which was followed by NL1369 (2287 kg/ha), NL 1202 (2205 kg/ha), BL 4708 (2197 kg/ha) and BL 4820 (2118 kg/ha). Among these tested genotypes BL 4708, NL 1202, NL 1211, NL 1307, NL 1327 and NL 1369 are recommended for the coordinated farmer's field trial for further verification and release as variety.


2014 ◽  
Vol 69 (3) ◽  
pp. 11-19
Author(s):  
NASER SABAGHNIA

Durum wheat has been subjected to intense cultivation due to its economic importance and it occupies second place after bread wheat in many regions. The experiment was organized in a randomized complete block design with four replications using thirteen newly improved durum wheat genotypes and one check cultivar as Dehdasht. Several traits including plant height, peduncle length, spike length, growth vigority, agronomic score, days to heading, days to physiological maturity, thousand kernel weight, test weight and grain yield were measured. Significant differences were observed for all the traits among durum wheat genotypes indicating considerable amount of variation. The estimates of the coefficient of variation were high for spike length and growth vigority. The number of days to heading ranged from 106.5 (G1 and G3) to 111.8 (G10) while G13 had the longest (146.0) and G2 (142.5) and G11 (142.3) had the shortest days to physiological maturity. The test weight ranged from 378.5 in G10 to 397.0 in G8, but the check cultivar indicated the highest thousand kernel weight (44.0 g). According to grain yield, G3 had the maximum yield (6720 kg ha-1) and G7 had the minimum yield (5047 kg ha-1). The high yielding genotypes had high values for growth vigority, spike length, peduncle length, agronomic score and thousand kernel weight. The information on the agro-morphological traits of the studied durum wheat genotypes will be helpful to plant breeders in constructing their breeding materials and implementing selection strategies.


2012 ◽  
Vol 40 (1) ◽  
pp. 195 ◽  
Author(s):  
Mohtasham MOHAMMADI ◽  
Peyman SHARIFI ◽  
Rahmatollah KARIMIZADEH ◽  
Mohammad Kazem SHEFAZADEH

Path and correlation analysis were executed to investigate the relationships between grain yield and other important yield components in bread wheat (Triticum aestivum L.) genotypes during two years (2009-2011) under supplemental irrigation and dryland conditions. Field experiments were performed in a randomized complete block design with four replications. Grain yield showed positive correlation with plant height and test weight under supplemental irrigation condition. The similar results were also revealed between grain yield and plant height, spike length, days to maturity, agronomic score and test weight in dryland environment. The grain yield of bread wheat in dryland condition depended on the effect of plant height, days to maturity, agronomic score and 1000 kernel weight, whereas in supplemental irrigation was mainly related to plant height, spike length, 1000 kernel weight and test weight. The influence of 1000 kernel weight on grain yield in both environments seems to cause from the fact that grain yield in wheat is frequently the sink limited, and for this reason, the 1000 kernel weight has been reported as a promising trait for increasing grain yield in wheat under different conditions. The nearly equal value of correlation and path coefficients of plant height and grain yield showed plant height had positive and direct effect on grain yield, in both conditions and suggesting a criteria trait for improving of grain yield. The results showed that genotype 12 (CS/TH.SC//3*PVN/3/MIRLO/BUC/4/MILAN/5/ TILHI) is a high yielding potential genotype in moisture limited conditions.


2018 ◽  
Vol 55 (3) ◽  
pp. 484-499 ◽  
Author(s):  
REZA MOHAMMADI ◽  
ALIREZA ETMINAN ◽  
LIA SHOSHTARI

SUMMARYKnowledge of agro-physiological traits associated with drought tolerance would be useful for developing breeding materials for drought-prone environments. This study was conducted (i) to estimate genetic variability among 25 durum wheat genotypes in response to drought based on grain yield and 15 agro-physiological traits in single and multi-year trials; and (ii) to compare genotypes on the basis of multiple investigated traits using genotype by trait (GT) biplot technique and then recommend possible selection strategies. We found large genetic differences among durum wheat genotypes for agro-physiological traits in response to drought stress within and between single years, which revealed good promise in their further exploitation for selection in durum wheat breeding program. High broad-sense heritability and expected genetic advance as percent of mean observed in plant height (90.8%; 52.7%), grain yield (53.6%, 23.5%) and relative water loss (47.2%, 41.3%), respectively, indicated a major role of additive gene action. The results showed that the performance of genotypes was influenced by the year. The traits with high consistence across years were heading date, plant height and peduncle length. The potential quantum efficiency of photosystem II (Fv/Fm) and thousand-kernel weight (TKW) were positively associated with grain yield, while heading date, plant height and canopy temperature (CT) were negatively associated with grain yield under the drought conditions. In conclusion, based on across-year analyses, Fv/Fm, TKW, heading date, plant height and CT are the most promising traits for indirect selection.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
SUDHIR KUMAR ◽  
S. BHUVANESWARI ◽  
E. LAMALAKSHMI DEVI ◽  
S. K. SHARMA ◽  
M. A. ANSARI ◽  
...  

High significant variations were observed for all the traits studied under present investigation. Considering parameters, high phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were observed for the number of effective tillers per plant, grain yield per plant, plant height followed by days to 50% flowering. Heritability in broad sense was higher in all of the characters studied under present investigation. High heritability coupled with high genetic advance as percent of mean was observed in plant height, days to 50% flowering, days to maturity, number of spikelets per panicle and number of grains per panicle, indicated that these characters under additive gene control and selection for improvement might be effective. Both at the phenotypic and genotypic level, grain yield per plant had significant and positive association with plant height, panicle length,number of filled grains per panicle and number of spikelets per panicle but had significant negative association with number of effective tillers per plant and 1000- grain weight. Number of spikelets per panicle had the maximum positive and direct effect followed by days to maturity, plant height, spikelet fertility and 1000- grain weight. Based on mean performance and various genetic parameters attributes, advance line namely, MC-34-1-10-6-1-26 was observed to be promising because it is of short duration, and yielded significantly higher than the short duration check RCM-8. Promising culture would be recommended for double cropping in the valley region of the state.


2001 ◽  
Vol 49 (3) ◽  
pp. 237-242 ◽  
Author(s):  
K. Z. Korkut ◽  
I. BAŞER ◽  
O. Bilgin

This research was conducted to determine the effect of genetic and phenotypic variability on the yield and yield components of some bread wheat varieties over a period of four years (1995–1998). Experiments were established according to a completely randomised block design with three replicates in the Experimental Field of Tekirda đ Agricultural Faculty, Thrace University. In the present research, genotypic and phenotypic variability, heritability and phenotypic correlation coefficients were estimated for plant height, spike length, number of spikelets per spike, number of spikes per square metre, thousand kernel weight, test weight and grain yield per hectare. The results of data analyses showed that the highest genotypic variability was obtained for per hectare yield, whereas the highest phenotypic variability values were found for plant height, thousand kernel weight and grain yield. For plant height, thousand grain yield and test weight, the broad sense heritability coefficient was found to be the highest, while it was low for spike length, number of spikelets per spike and number of Key words: bread wheat, genotypic variability, phenotypic variability, heritability coefficient, phenotypic correlation, grain yield


2014 ◽  
Vol 60 (4) ◽  
pp. 149-158
Author(s):  
Gohar Afrooz ◽  
Naser Sabaghnia ◽  
Rahmatollah Karimizadeh ◽  
Fariborz Shekari

Abstract Knowledge about the extent of variability and the association among traits are of a high value for any breeding efforts. The objective of this investigation is to evaluate the agro-morphological traits in a set of durum wheat genotypes under supplemental irrigation and dry land conditions. Results showed that principal component (PC) analysis had grouped the measured traits into four main components that altogether accounted for 77% of the total variation under non-stressed condition and 87% under water-stressed condition. With regard to the first four PCs, peduncle length, agronomic score, grain yield, vigority, test weight, days to physiological maturity and thousand kernel weight have shown to be the most important variables affecting the performance of durum wheat under non-stressed condition. In the first four PCs at the water- stressed condition, agronomic score, grain yield, vigority, days to physiological maturity, test weight and peduncle length have been shown to be the important variables under water-stressed condition. The results of factor analysis relatively confirmed the results of PC analysis. Our findings indicated that a selection strategy should take into consideration of agronomic score and days to physiological maturity under non-stressed condition while plant height and spike length under water-stressed condition. Therefore, the above-mentioned traits could be used as indirect selection criteria for genetic improvement of grain yield in durum wheat, especially in early generations of breeding programmes


2020 ◽  
Vol 12 (2) ◽  
pp. 107-113
Author(s):  
İ. Öztürk

Abstract. The purpose of the study was to assess the relationships between physiological parameters and grain yield of different bread wheat genotypes. In the present research a total of 25 bread wheat genotypes were tested during the 2016-2017 seasons under rainfed conditions. The experiment was conducted in a randomized complete blocks design with four replications. Grain yield, days of heading, plant height, biomass (NDVI) from GS25 up to GS85 growth stage, chlorophyll content (SPAD) during the heading stage, canopy temperature (CT) at GS60 and GS75 growth stages, and glaucousness were investigated. The results of variance analyses showed that there were significant differences (p<0.01) among genotypes for yield. The mean grain yield was 7948 kg ha-1 and yield ranged from 7033 kg ha-1 to 8759 kg ha-1, the highest grain yield performed by TE6744-16 line. According to the results, significant differences among cultivars in terms of plant height, days of heading, biomass, chlorophyll content, canopy temperature, glaucousness were found. TE6627-6 line had the highest chlorophyll content and also, chlorophyll content positively affected grain yield. Canopy temperature is generally related to yield under drought stress condition in bread wheat. In the study early maturing (days of heading) genotypes had lower canopy temperature. An increase in biomass after the heading phase has positively affected grain yield. In the study, no correlation was found between grain yield and biomass at GS25 and GS45 growth phase. There was a negative correlation between glaucousness with biomass at GS60, GS75 and GS85 growth phase. These results showed that physiological parameters such as biomass (at GS75 and GS85), canopy temperature (at GS60 and GS75), and chlorophyll content (at GS60), and glaucousness could be used for selection parameters under rainfed conditions for yield in bread wheat.


Sign in / Sign up

Export Citation Format

Share Document