scholarly journals Automatic and Accurate Calculation of Rice Seed Setting Rate Based on Image Segmentation and Deep Learning

2021 ◽  
Vol 12 ◽  
Author(s):  
Yixin Guo ◽  
Shuai Li ◽  
Zhanguo Zhang ◽  
Yang Li ◽  
Zhenbang Hu ◽  
...  

The rice seed setting rate (RSSR) is an important component in calculating rice yields and a key phenotype for its genetic analysis. Automatic calculations of RSSR through computer vision technology have great significance for rice yield predictions. The basic premise for calculating RSSR is having an accurate and high throughput identification of rice grains. In this study, we propose a method based on image segmentation and deep learning to automatically identify rice grains and calculate RSSR. By collecting information on the rice panicle, our proposed image automatic segmentation method can detect the full grain and empty grain, after which the RSSR can be calculated by our proposed rice seed setting rate optimization algorithm (RSSROA). Finally, the proposed method was used to predict the RSSR during which process, the average identification accuracy reached 99.43%. This method has therefore been proven as an effective, non-invasive method for high throughput identification and calculation of RSSR. It is also applicable to soybean yields, as well as wheat and other crops with similar characteristics.

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Shuangcheng Li ◽  
Wenbo Li ◽  
Bin Huang ◽  
Xuemei Cao ◽  
Xingyu Zhou ◽  
...  

2021 ◽  
Vol 12 (24) ◽  
pp. 25
Author(s):  
Andrea Felicetti ◽  
Marina Paolanti ◽  
Primo Zingaretti ◽  
Roberto Pierdicca ◽  
Eva Savina Malinverni

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p class="VARAbstract">Mosaic is an ancient type of art used to create decorative images or patterns combining small components. A digital version of a mosaic can be useful for archaeologists, scholars and restorers who are interested in studying, comparing and preserving mosaics. Nowadays, archaeologists base their studies mainly on manual operation and visual observation that, although still fundamental, should be supported by an automatized procedure of information extraction. In this context, this research explains improvements which can change the manual and time-consuming procedure of mosaic tesserae drawing. More specifically, this paper analyses the advantages of using Mo.Se. (Mosaic Segmentation), an algorithm that exploits deep learning and image segmentation techniques; the methodology combines U-Net 3 Network with the Watershed algorithm. The final purpose is to define a workflow which establishes the steps to perform a robust segmentation and obtain a digital (vector) representation of a mosaic. The detailed approach is presented, and theoretical justifications are provided, building various connections with other models, thus making the workflow both theoretically valuable and practically scalable for medium or large datasets. The automatic segmentation process was tested with the high-resolution orthoimage of an ancient mosaic by following a close-range photogrammetry procedure. Our approach has been tested in the pavement of St. Stephen's Church in Umm ar-Rasas, a Jordan archaeological site, located 30 km southeast of the city of Madaba (Jordan). Experimental results show that this generalized framework yields good performances, obtaining higher accuracy compared with other state-of-the-art approaches. Mo.Se. has been validated using publicly available datasets as a benchmark, demonstrating that the combination of learning-based methods with procedural ones enhances segmentation performance in terms of overall accuracy, which is almost 10% higher. This study’s ambitious aim is to provide archaeologists with a tool which accelerates their work of automatically extracting ancient geometric mosaics.</p><p><strong>Highlights:</strong></p><ul><li><p>A Mo.Se. (Mosaic Segmentation) algorithm is described with the purpose to perform robust image segmentation to automatically detect tesserae in ancient mosaics.</p></li><li><p>This research aims to overcome manual and time-consuming procedure of tesserae segmentation by proposing an approach that uses deep learning and image processing techniques, obtaining a digital replica of a mosaic.</p></li><li><p>Extensive experiments show that the proposed framework outperforms state-of-the-art methods with higher accuracy, even compared with publicly available datasets.</p></li></ul></div></div></div>


2021 ◽  
Author(s):  
Lydia Kienbaum ◽  
Miguel Correa Abondano ◽  
Raul H. Blas Sevillano ◽  
Karl J Schmid

Background: Maize cobs are an important component of crop yield that exhibit a high diversity in size, shape and color in native landraces and modern varieties. Various phenotyping approaches were developed to measure maize cob parameters in a high throughput fashion. More recently, deep learning methods like convolutional neural networks (CNN) became available and were shown to be highly useful for high-throughput plant phenotyping. We aimed at comparing classical image segmentation with deep learning methods for maize cob image segmentation and phenotyping using a large image dataset of native maize landrace diversity from Peru. Results: Comparison of three image analysis methods showed that a Mask R-CNN trained on a diverse set of maize cob images was highly superior to classical image analysis using the Felzenszwalb-Huttenlocher algorithm and a Window-based CNN due to its robustness to image quality and object segmentation accuracy (r=0.99). We integrated Mask R-CNN into a high-throughput pipeline to segment both maize cobs and rulers in images and perform an automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity, asymmetry, aspect ratio and average RGB values for cob color. Statistical analysis identified key training parameters for efficient iterative model updating. We also show that a small number of 10-20 images is sufficient to update the initial Mask R-CNN model to process new types of cob images. To demonstrate an application of the pipeline we analyzed phenotypic variation in 19,867 maize cobs extracted from 3,449 images of 2,484 accessions from the maize genebank of Peru to identify phenotypically homogeneous and heterogeneous genebank accessions using multivariate clustering. Conclusions: Single Mask R-CNN model and associated analysis pipeline are widely applicable tools for maize cob phenotyping in contexts like genebank phenomics or plant breeding.


2020 ◽  
Author(s):  
Hongchao Ji ◽  
Hongmei Lu ◽  
Zhimin Zhang

The sequential window acquisition of all theoretical spectra (SWATH) technique is a specific variant of data-independent acquisition (DIA), which is supposed to increase the metabolite coverage and the reproducibility compared to data-dependent acquisition (DDA). However, SWATH technique lost the direct link between the precursor ion and the fragments. Here, we propose a deep-learning-based approach (DeepSWATH) to reconstruct the association between the MS/MS spectra and their precursors. Comparing with MS-DIAL, the proposed method can extract more accurate spectra with less noise to improve the identification accuracy of metabolites. Besides, DeepSWATH can also handle severe coelution conditions.


2020 ◽  
Vol 2 (4) ◽  
pp. 187-193
Author(s):  
Dr. Akey Sungheetha ◽  
Dr. Rajesh Sharma R

Recently, deep learning technique is playing important starring role for image segmentation field in medical imaging of accurate tasks. In a critical component of diagnosis, deep learning is an organized network with homogeneous areas to provide accurate results. It is proved its superior quality with statistical model automatic segmentation methods in many critical condition environments. In this research article, we focus the improved accuracy and speed of the system process compared with conservative automatic segmentation methods. Also we compared performance metrics such as accuracy, sensitivity, specificity, precision, RMSE, Precision- Recall Curve with different algorithm in deep learning method. This comparative study covers the constructing an efficient and accurate model for Lung CT image segmentation.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Lydia Kienbaum ◽  
Miguel Correa Abondano ◽  
Raul Blas ◽  
Karl Schmid

Abstract Background Maize cobs are an important component of crop yield that exhibit a high diversity in size, shape and color in native landraces and modern varieties. Various phenotyping approaches were developed to measure maize cob parameters in a high throughput fashion. More recently, deep learning methods like convolutional neural networks (CNNs) became available and were shown to be highly useful for high-throughput plant phenotyping. We aimed at comparing classical image segmentation with deep learning methods for maize cob image segmentation and phenotyping using a large image dataset of native maize landrace diversity from Peru. Results Comparison of three image analysis methods showed that a Mask R-CNN trained on a diverse set of maize cob images was highly superior to classical image analysis using the Felzenszwalb-Huttenlocher algorithm and a Window-based CNN due to its robustness to image quality and object segmentation accuracy ($$r=0.99$$ r = 0.99 ). We integrated Mask R-CNN into a high-throughput pipeline to segment both maize cobs and rulers in images and perform an automated quantitative analysis of eight phenotypic traits, including diameter, length, ellipticity, asymmetry, aspect ratio and average values of red, green and blue color channels for cob color. Statistical analysis identified key training parameters for efficient iterative model updating. We also show that a small number of 10–20 images is sufficient to update the initial Mask R-CNN model to process new types of cob images. To demonstrate an application of the pipeline we analyzed phenotypic variation in 19,867 maize cobs extracted from 3449 images of 2484 accessions from the maize genebank of Peru to identify phenotypically homogeneous and heterogeneous genebank accessions using multivariate clustering. Conclusions Single Mask R-CNN model and associated analysis pipeline are widely applicable tools for maize cob phenotyping in contexts like genebank phenomics or plant breeding.


2020 ◽  
Author(s):  
Yuseok Jeong ◽  
Junghan Lee ◽  
Myeongjun Park ◽  
Hongro Lee ◽  
Jeong-Ho Baek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document