scholarly journals Comparative Study: Statistical Approach and Deep Learning Method for Automatic Segmentation Methods for Lung CT Image Segmentation

2020 ◽  
Vol 2 (4) ◽  
pp. 187-193
Author(s):  
Dr. Akey Sungheetha ◽  
Dr. Rajesh Sharma R

Recently, deep learning technique is playing important starring role for image segmentation field in medical imaging of accurate tasks. In a critical component of diagnosis, deep learning is an organized network with homogeneous areas to provide accurate results. It is proved its superior quality with statistical model automatic segmentation methods in many critical condition environments. In this research article, we focus the improved accuracy and speed of the system process compared with conservative automatic segmentation methods. Also we compared performance metrics such as accuracy, sensitivity, specificity, precision, RMSE, Precision- Recall Curve with different algorithm in deep learning method. This comparative study covers the constructing an efficient and accurate model for Lung CT image segmentation.

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 268
Author(s):  
Yeganeh Jalali ◽  
Mansoor Fateh ◽  
Mohsen Rezvani ◽  
Vahid Abolghasemi ◽  
Mohammad Hossein Anisi

Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years, several approaches, based on a deep learning framework, have been effectively applied in medical image segmentation. Among existing deep neural networks, the U-Net has provided great success in this field. In this paper, we propose a deep neural network architecture to perform an automatic lung CT image segmentation process. In the proposed method, several extensive preprocessing techniques are applied to raw CT images. Then, ground truths corresponding to these images are extracted via some morphological operations and manual reforms. Finally, all the prepared images with the corresponding ground truth are fed into a modified U-Net in which the encoder is replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture, we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced integrator module instead of simple traditional concatenators. This is to merge the extracted feature maps of the corresponding contracting path into the previous expansion of the up-convolutional layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of the proposed method where a dice coefficient index of 97.31% is achieved.


Automatic segmentation of liver from the abdominal Computed Tomography images is a difficult task. It is very important to segment the liver accurately, so the tumors can be located, detected and classified accurately within a liver. The proposed segmentation methods include preprocessing stage as first step where image resizing and grayscale conversion is performed. Thresholding technique is applied to obtain a binary image. Next, liver is segmented from 2-D abdominal CT scanned images using various segmentation methods like adaptive thresholding with morphological operations, global thresholding with morphological operations and Watershed gradient transform. Next, Active contour balloon snake model is applied on 3-D dataset 3D-IRCADb (3D Image Reconstruction for Comparison of Algorithm Database). The empirical comparative study is carried out using JSC, DSC, sensitivity, specificity and accuracy and results are tabulated. The empirical comparative study of these methods using Dice and Jaccard Similarity Coefficient is carried out and results are tabulated.


2021 ◽  
Vol 11 (12) ◽  
pp. 5488
Author(s):  
Wei Ping Hsia ◽  
Siu Lun Tse ◽  
Chia Jen Chang ◽  
Yu Len Huang

The purpose of this article is to evaluate the accuracy of the optical coherence tomography (OCT) measurement of choroidal thickness in healthy eyes using a deep-learning method with the Mask R-CNN model. Thirty EDI-OCT of thirty patients were enrolled. A mask region-based convolutional neural network (Mask R-CNN) model composed of deep residual network (ResNet) and feature pyramid networks (FPNs) with standard convolution and fully connected heads for mask and box prediction, respectively, was used to automatically depict the choroid layer. The average choroidal thickness and subfoveal choroidal thickness were measured. The results of this study showed that ResNet 50 layers deep (R50) model and ResNet 101 layers deep (R101). R101 U R50 (OR model) demonstrated the best accuracy with an average error of 4.85 pixels and 4.86 pixels, respectively. The R101 ∩ R50 (AND model) took the least time with an average execution time of 4.6 s. Mask-RCNN models showed a good prediction rate of choroidal layer with accuracy rates of 90% and 89.9% for average choroidal thickness and average subfoveal choroidal thickness, respectively. In conclusion, the deep-learning method using the Mask-RCNN model provides a faster and accurate measurement of choroidal thickness. Comparing with manual delineation, it provides better effectiveness, which is feasible for clinical application and larger scale of research on choroid.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Changyong Li ◽  
Yongxian Fan ◽  
Xiaodong Cai

Abstract Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.


Sign in / Sign up

Export Citation Format

Share Document