scholarly journals Mo.Se.: Mosaic image segmentation based on deep cascading learning

2021 ◽  
Vol 12 (24) ◽  
pp. 25
Author(s):  
Andrea Felicetti ◽  
Marina Paolanti ◽  
Primo Zingaretti ◽  
Roberto Pierdicca ◽  
Eva Savina Malinverni

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p class="VARAbstract">Mosaic is an ancient type of art used to create decorative images or patterns combining small components. A digital version of a mosaic can be useful for archaeologists, scholars and restorers who are interested in studying, comparing and preserving mosaics. Nowadays, archaeologists base their studies mainly on manual operation and visual observation that, although still fundamental, should be supported by an automatized procedure of information extraction. In this context, this research explains improvements which can change the manual and time-consuming procedure of mosaic tesserae drawing. More specifically, this paper analyses the advantages of using Mo.Se. (Mosaic Segmentation), an algorithm that exploits deep learning and image segmentation techniques; the methodology combines U-Net 3 Network with the Watershed algorithm. The final purpose is to define a workflow which establishes the steps to perform a robust segmentation and obtain a digital (vector) representation of a mosaic. The detailed approach is presented, and theoretical justifications are provided, building various connections with other models, thus making the workflow both theoretically valuable and practically scalable for medium or large datasets. The automatic segmentation process was tested with the high-resolution orthoimage of an ancient mosaic by following a close-range photogrammetry procedure. Our approach has been tested in the pavement of St. Stephen's Church in Umm ar-Rasas, a Jordan archaeological site, located 30 km southeast of the city of Madaba (Jordan). Experimental results show that this generalized framework yields good performances, obtaining higher accuracy compared with other state-of-the-art approaches. Mo.Se. has been validated using publicly available datasets as a benchmark, demonstrating that the combination of learning-based methods with procedural ones enhances segmentation performance in terms of overall accuracy, which is almost 10% higher. This study’s ambitious aim is to provide archaeologists with a tool which accelerates their work of automatically extracting ancient geometric mosaics.</p><p><strong>Highlights:</strong></p><ul><li><p>A Mo.Se. (Mosaic Segmentation) algorithm is described with the purpose to perform robust image segmentation to automatically detect tesserae in ancient mosaics.</p></li><li><p>This research aims to overcome manual and time-consuming procedure of tesserae segmentation by proposing an approach that uses deep learning and image processing techniques, obtaining a digital replica of a mosaic.</p></li><li><p>Extensive experiments show that the proposed framework outperforms state-of-the-art methods with higher accuracy, even compared with publicly available datasets.</p></li></ul></div></div></div>

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Changyong Li ◽  
Yongxian Fan ◽  
Xiaodong Cai

Abstract Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 967
Author(s):  
Amirreza Mahbod ◽  
Gerald Schaefer ◽  
Christine Löw ◽  
Georg Dorffner ◽  
Rupert Ecker ◽  
...  

Nuclei instance segmentation can be considered as a key point in the computer-mediated analysis of histological fluorescence-stained (FS) images. Many computer-assisted approaches have been proposed for this task, and among them, supervised deep learning (DL) methods deliver the best performances. An important criterion that can affect the DL-based nuclei instance segmentation performance of FS images is the utilised image bit depth, but to our knowledge, no study has been conducted so far to investigate this impact. In this work, we released a fully annotated FS histological image dataset of nuclei at different image magnifications and from five different mouse organs. Moreover, by different pre-processing techniques and using one of the state-of-the-art DL-based methods, we investigated the impact of image bit depth (i.e., eight bits vs. sixteen bits) on the nuclei instance segmentation performance. The results obtained from our dataset and another publicly available dataset showed very competitive nuclei instance segmentation performances for the models trained with 8 bit and 16 bit images. This suggested that processing 8 bit images is sufficient for nuclei instance segmentation of FS images in most cases. The dataset including the raw image patches, as well as the corresponding segmentation masks is publicly available in the published GitHub repository.


Author(s):  
Usman Ahmed ◽  
Jerry Chun-Wei Lin ◽  
Gautam Srivastava

Deep learning methods have led to a state of the art medical applications, such as image classification and segmentation. The data-driven deep learning application can help stakeholders to collaborate. However, limited labelled data set limits the deep learning algorithm to generalize for one domain into another. To handle the problem, meta-learning helps to learn from a small set of data. We proposed a meta learning-based image segmentation model that combines the learning of the state-of-the-art model and then used it to achieve domain adoption and high accuracy. Also, we proposed a prepossessing algorithm to increase the usability of the segments part and remove noise from the new test image. The proposed model can achieve 0.94 precision and 0.92 recall. The ability to increase 3.3% among the state-of-the-art algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1459 ◽  
Author(s):  
Tamás Czimmermann ◽  
Gastone Ciuti ◽  
Mario Milazzo ◽  
Marcello Chiurazzi ◽  
Stefano Roccella ◽  
...  

This paper reviews automated visual-based defect detection approaches applicable to various materials, such as metals, ceramics and textiles. In the first part of the paper, we present a general taxonomy of the different defects that fall in two classes: visible (e.g., scratches, shape error, etc.) and palpable (e.g., crack, bump, etc.) defects. Then, we describe artificial visual processing techniques that are aimed at understanding of the captured scenery in a mathematical/logical way. We continue with a survey of textural defect detection based on statistical, structural and other approaches. Finally, we report the state of the art for approaching the detection and classification of defects through supervised and non-supervised classifiers and deep learning.


Author(s):  
Reza Kalantar ◽  
Gigin Lin ◽  
Jessica M Winfield ◽  
Christina Messiou ◽  
Susan Lalondrelle ◽  
...  

The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides ground for technology development for computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive and clinically-oriented overview of DL-based segmentation studies for bladder, prostate, cervical and rectal cancers, highlighting the key findings, challenges and limitations.


Author(s):  
Aparna .

A naturalist is someone who studies the patterns of nature identify different kingdom of flora and fauna in the nature. Being able to identify the flora and fauna around us often leads to an interest in protecting wild species, collecting and sharing information about the species we see on our travels is very useful for conserving groups like NCC. Deep-learning based techniques and methods are becoming popular in digital naturalist studies, as their performance is superior in image analysis fields, such as object detection, image classification, and semantic segmentation. Deep-learning techniques have achieved state of-the -art performance for automatic segmentation of digital naturalist through multi-model image sensing. Our task as naturalist has grown widely in the field of natural-historians. It has increased from identification to saviours as well. Not only identifying flora and fauna but also to know about their habits, habitats, living and grouping lead to fetching services for protection as well.


2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Mateo Gende ◽  
Joaquim de Moura ◽  
Jorge Novo ◽  
Pablo Charlón ◽  
Marcos Ortega

The Epiretinal Membrane (ERM) is an ocular disease that appears as a fibro-cellular layer of tissue over the retina, specifically, over the Inner Limiting Membrane (ILM). It causes vision blurring and distortion, and its presence can be indicative of other ocular pathologies, such as diabetic macular edema. The ERM diagnosis is usually performed by visually inspecting Optical Coherence Tomography (OCT) images, a manual process which is tiresome and prone to subjectivity. In this work, we present a methodology for the automatic segmentation and visualisation of the ERM in OCT volumes using deep learning. By employing a Densely Connected Convolutional Network, every pixel in the ILM can be classified into either healthy or pathological. Thus, a segmentation of the region susceptible to ERM appearance can be produced. This methodology also produces an intuitive colour map representation of the ERM presence over a visualisation of the eye fundus created from the OCT volume. In a series of representative experiments conducted to evaluate this methodology, it achieved a Dice score of 0.826±0.112 and a Jaccard index of 0.714±0.155. The results that were obtained demonstrate the competitive performance of the proposed methodology when compared to other works in the state of the art.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1964
Author(s):  
Reza Kalantar ◽  
Gigin Lin ◽  
Jessica M. Winfield ◽  
Christina Messiou ◽  
Susan Lalondrelle ◽  
...  

The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive, non-systematic and clinically-oriented overview of 74 DL-based segmentation studies, published between January 2016 and December 2020, for bladder, prostate, cervical and rectal cancers on computed tomography (CT) and magnetic resonance imaging (MRI), highlighting the key findings, challenges and limitations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yixin Guo ◽  
Shuai Li ◽  
Zhanguo Zhang ◽  
Yang Li ◽  
Zhenbang Hu ◽  
...  

The rice seed setting rate (RSSR) is an important component in calculating rice yields and a key phenotype for its genetic analysis. Automatic calculations of RSSR through computer vision technology have great significance for rice yield predictions. The basic premise for calculating RSSR is having an accurate and high throughput identification of rice grains. In this study, we propose a method based on image segmentation and deep learning to automatically identify rice grains and calculate RSSR. By collecting information on the rice panicle, our proposed image automatic segmentation method can detect the full grain and empty grain, after which the RSSR can be calculated by our proposed rice seed setting rate optimization algorithm (RSSROA). Finally, the proposed method was used to predict the RSSR during which process, the average identification accuracy reached 99.43%. This method has therefore been proven as an effective, non-invasive method for high throughput identification and calculation of RSSR. It is also applicable to soybean yields, as well as wheat and other crops with similar characteristics.


Sign in / Sign up

Export Citation Format

Share Document