scholarly journals Development and Evaluation of Stable Sugarcane Mosaic Virus Mild Mutants for Cross-Protection Against Infection by Severe Strain

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Jie Xu ◽  
Qing Zhu ◽  
Shao-Yan Jiang ◽  
Zhi-Yong Yan ◽  
Chao Geng ◽  
...  

Sugarcane mosaic virus (SCMV; genus Potyvirus) induces maize dwarf mosaic disease that has caused serious yield losses of maize in China. Cross-protection is one of the efficient strategies to fight against severe virus strains. Although many mild strains have been identified, the spontaneous mutation is one of the challenging problems affecting their application in cross-protection. In this study, we found that the substitution of cysteine (C) at positions 57 or 60 in the zinc finger-like motif of HC-Pro with alanine (A; C57A or C60A) significantly reduced its RNA silencing suppression activity and SCMV virulence. To reduce the risk of mild strains mutating to virulent ones by reverse or complementary mutations, we obtained attenuated SCMV mutants with double-mutations in the zinc finger-like and FRNK motifs of HC-Pro and evaluated their potential application in cross-protection. The results showed that the maize plants infected with FKNK/C60A double-mutant showed symptomless until 95 days post-inoculation and FKNK/C60A cross-protected plants displayed high resistance to severe SCMV strain. This study provides theoretical and material bases for the control of SCMV through cross-protection.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yongqiang Li ◽  
Fei Xia ◽  
Yixuan Wang ◽  
Chenge Yan ◽  
Anning Jia ◽  
...  

Abstract Background Cannas are popular ornamental plants and widely planted for the beautiful foliage and flower. Viral disease is a major threaten to canna horticulture industry. In the city of Beijing, mosaic disease in canna was frequently observed, but the associated causal agent and its biological characterization is still unknown. Results After small RNA deep sequencing, 36,776 contigs were assembled and 16 of them shared high sequence identities with the different proteins of Sugarcane mosaic virus (SCMV) of the size ranging from 86 to 1911 nt. The complete genome of SCMV isolate (canna) was reconstructed by sequencing all cDNA clones obtained from RT-PCR and 5′\3′ RACE amplifications. SCMV-canna isolate showed to have a full RNA genome of 9579 nt in length and to share 78% nt and 85% aa sequence identities with SCMV isolates from other hosts. The phylogenetic tree constructed based on the full genome sequence of SCMV isolates allocated separately the canna-isolate in a distinct clade, indicating a new strain. Recombination analyses demonstrated that SCMV-canna isolate was a recombinant originating from a sugarcane-infecting isolate (major parent, acc. no. AJ310103) and a maize-infecting isolate (minor parent, acc. no. AJ297628). Pathogenicity test showed SCMV-canna could cause typical symptoms of mosaic and necrosis in some tested plants with varying levels of severity but was less virulent than the isolate SCMV-BJ. Field survey showed that the virus was widely distributed. Conclusions This study identified SCMV as the major agent causing the prevalent mosaic symptom in canna plants in Beijing and its genomic and biological characterizations were further explored. All these data enriched the knowledge of the viruses infecting canna and would be helpful in effective disease management in canna.


2014 ◽  
Vol 27 (9) ◽  
pp. 944-955 ◽  
Author(s):  
Yi-Jung Kung ◽  
Pin-Chun Lin ◽  
Shyi-Dong Yeh ◽  
Syuan-Fei Hong ◽  
Nam-Hai Chua ◽  
...  

Cross-protection triggered by a mild strain of virus acts as a prophylaxis to prevent subsequent infections by related viruses in plants; however, the underling mechanisms are not fully understood. Through mutagenesis, we isolated a mutant strain of Turnip mosaic virus (TuMV), named Tu-GK, that contains an Arg182Lys substitution in helper component-proteinase (HC-ProK) that confers complete cross-protection against infection by a severe strain of TuMV in Nicotiana benthamiana, Arabidopsis thaliana Col-0, and the Arabidopsis dcl2-4/dcl4-1 double mutant defective in DICER-like ribonuclease (DCL)2/DCL4-mediated silencing. Our analyses showed that HC-ProK loses the ability to interfere with microRNA pathways, although it retains a partial capability for RNA silencing suppression triggered by DCL. We further showed that Tu-GK infection triggers strong salicylic acid (SA)-dependent and SA-independent innate immunity responses. Our data suggest that DCL2/4-dependent and –independent RNA silencing pathways are involved, and may crosstalk with basal innate immunity pathways, in host defense and in cross-protection.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97013 ◽  
Author(s):  
Zihao Xia ◽  
Jun Peng ◽  
Yongqiang Li ◽  
Ling Chen ◽  
Shuai Li ◽  
...  

2008 ◽  
Vol 2 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Yunfeng Bai ◽  
Hongchun Yang ◽  
Lin Qu ◽  
Jun Zheng ◽  
Jinpeng Zhang ◽  
...  

Virus Genes ◽  
2005 ◽  
Vol 30 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Yongwang Zhong ◽  
Anyuan Guo ◽  
Chunbo Li ◽  
Binquan Zhuang ◽  
Ming Lai ◽  
...  

Plant Disease ◽  
1998 ◽  
Vol 82 (2) ◽  
pp. 171-175 ◽  
Author(s):  
J. A. M. Rezende ◽  
D. A. Pacheco

Two mild strains of papaya ringspot virus-type W (PRSV-W) were tested under greenhouse and field conditions to study the potential of cross-protection for control of zucchini squash mosaic. Protected plants of zucchini squash cultivars Caserta and Clarinda were challenged with three severe strains from different geographic regions of the country in tests carried out in the greenhouse. Challenge inoculations were done mechanically 10 and 20 days after the protective inoculation. The mild strains did not have a visible negative effect on the development of the plants and offered effective protection against the severe strains. Field tests of protected Caserta plants were carried out in Piracicaba County, São Paulo. Comparative evaluation based on the symptoms and development of protected and unprotected plants of zucchini squash showed that both mild strains effectively protected the plants against the effects of the severe strain present in the field. Yield of marketable fruits harvested from protected plants was only 10% less than that of the healthy plants in one field trial. Compared with the yield from plants infected with the severe strains, protected plants showed an increase of 511 and 633% in the number and weight of marketable fruits, respectively, in a test in 1994. In a second experiment in 1995, an increase of 327% in the number and 344% in the weight of marketable fruits was recorded. These studies demonstrate the effectiveness of cross-protection for the control of the mosaic disease caused by PRSV-W in zucchini squash and offer growers a method for large-scale application of this technology.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1078-1078 ◽  
Author(s):  
K. Trzmiel

Maize (Zea mays) has become an important crop in Poland with a constant increase in crop acreage since the 1990s. In 2007, maize plants with characteristic leaf mosaic were observed in two locations in the Wielkopolska Region near Poznań and Krotoszyn. Ninety-two samples from plants showing leaf mosaic, some leaf discoloration, stunting, or no symptoms were collected and tested for Maize dwarf mosaic virus (MDMV) and Sugarcane mosaic virus (SCMV) by double-antibody sandwich (DAS)-ELISA (Bioreba, Basel, Switzerland). SCMV was detected only in three samples with distinct leave mosaic symptoms. Electron microscopy of leaf extracts revealed numerous potyvirus-like particles. Immuno-specific electron microscopy (ISEM) with the SCMV antiserum gave positive results for all three samples. Each virus isolate was propagated by mechanical inoculation on five varieties of dent maize and three varieties of sweet maize, cockspur grass (Echinochloa crus-galli (L.) Beauv.), crab grass (Digitaria sanguinalis (L.) Scop.), and green bristle-grass (Setaria viridis (L.) P.B.). Leaf mosaic appeared 4 to 5 days postinoculation. ELISA detected all three isolates in the symptomless hosts of oat (Avena sativa L.), wheat (Triticum aestivum L.), and triticale (Triticale). The three isolates induced local leaf necrosis on sorghum (Sorghum vulgare L.), in which the virus occurred in low concentrations as determined by ELISA so infections of sorghum plants were confirmed by reverse transcription (RT)-PCR) with primers PS/PSC (1). Barley (Hordeum vulgare L.), true millet (Panicum miliaceum L.), and wind grass (Agrostis spica-venti (L.) P.B.) were not susceptible (2). Using the total RNA extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany) from leaves of inoculated maize plants, a one step RT-PCR (Qiagen) amplified a ~800-bp cDNA fragment of the coat protein gene with SCMV-specific primers PS/PSC (1). Six cDNA clones were sequenced for each isolate. Nucleotide sequences of the 823-bp cDNA clones of isolates SCMV-P1 and P2 (GenBank Accession Nos. EU761241 and EU761242, respectively) were 99% identical and each was 92% identical to the sequence of SCMV-P3 (FJ376609). The clones of SCMV-P1 and SCMV-P2 shared 99, 98, 90, and 87% nucleotide sequence identity with two German SCMV isolates (X981697 and X98168), a Spanish isolate (AM110759), the UT6 isolate from Thailand (AY630923), and the Nancheng isolate (EU346720) from China, respectively. The SCMV-P3 sequence was 98, 94, 92, 89, and 92% identical to the Mx isolate from Mexico (AY195610), a Bulgarian SCMV isolate (AJ006201), the German Seehausen (X98166) and Borsdorf (X98167) isolates, the SC-UD1 (DQ647661), the KL – Co86032 (DQ866744) isolates from Thailand and India, and the Chinese Nanchang (EU346720) and Pengze2 (EU346718) isolates, respectively. In 2008, SCMV was again detected by ELISA in mixed infections with MDMV in samples from the Wielkopolska Region, but only sporadically, and the virus is considered not to be important economically in maize production in Poland. References: (1) J. X. Jiang and X. P. Zhou. Arch. Virol. 147:2437, 2002. (2) D. M. Persley. Page: 1204 in: Viruses of Plants. Descriptions and Lists from the VIDE Database. CAB International, Wallingford, UK, 1996.


Sign in / Sign up

Export Citation Format

Share Document