scholarly journals Genetic Diversity and Population Structure of Sorghum [Sorghum Bicolor (L.) Moench] Accessions as Revealed by Single Nucleotide Polymorphism Markers

2022 ◽  
Vol 12 ◽  
Author(s):  
Muluken Enyew ◽  
Tileye Feyissa ◽  
Anders S. Carlsson ◽  
Kassahun Tesfaye ◽  
Cecilia Hammenhag ◽  
...  

Ethiopia is the center of origin for sorghum [Sorghum bicolor (L.) Moench], where the distinct agro-ecological zones significantly contributed to the genetic diversity of the crops. A large number of sorghum landrace accessions have been conserved ex situ. Molecular characterization of this diverse germplasm can contribute to its efficient conservation and utilization in the breeding programs. This study aimed to investigate the genetic diversity of Ethiopian sorghum using gene-based single nucleotide polymorphism (SNP) markers. In total, 359 individuals representing 24 landrace accessions were genotyped using 3,001 SNP markers. The SNP markers had moderately high polymorphism information content (PIC = 0.24) and gene diversity (H = 0.29), on average. This study revealed 48 SNP loci that were significantly deviated from Hardy–Weinberg equilibrium with excess heterozygosity and 13 loci presumed to be under selection (P < 0.01). The analysis of molecular variance (AMOVA) determined that 35.5% of the total variation occurred within and 64.5% among the accessions. Similarly, significant differentiations were observed among geographic regions and peduncle shape-based groups. In the latter case, accessions with bent peduncles had higher genetic variation than those with erect peduncles. More alleles that are private were found in the eastern region than in the other regions of the country, suggesting a good in situ conservation status in the east. Cluster, principal coordinates (PCoA), and STRUCTURE analyses revealed distinct accession clusters. Hence, crossbreeding genotypes from different clusters and evaluating their progenies for desirable traits is advantageous. The exceptionally high heterozygosity observed in accession SB4 and SB21 from the western geographic region is an intriguing finding of this study, which merits further investigation.

2021 ◽  
Vol 19 (1) ◽  
pp. 20-28
Author(s):  
Abush Tesfaye Abebe ◽  
Adesike Oladoyin Kolawole ◽  
Nnanna Unachukwu ◽  
Godfree Chigeza ◽  
Hailu Tefera ◽  
...  

AbstractSoybean (Glycine max (L.) Merr.) is an important legume crop with high commercial value widely cultivated globally. Thus, the genetic characterization of the existing soybean germplasm will provide useful information for enhanced conservation, improvement and future utilization. This study aimed to assess the extent of genetic diversity of soybean elite breeding lines and varieties developed by the soybean breeding programme of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. The genetic diversity of 65 soybean genotypes was studied using single-nucleotide polymorphism (SNP) markers. The result revealed that 2446 alleles were detected, and the indicators for allelic richness and diversity had good differentiating power in assessing the diversity of the genotypes. The three complementary approaches used in the study grouped the germplasm into three major clusters based on genetic relatedness. The analysis of molecular variance revealed that 71% (P < 0.001) variation was due to among individual genotypes, while 11% (P < 0.001) was ascribed to differences among the three clusters, and the fixation index (FST) was 0.11 for the SNP loci, signifying moderate genetic differentiation among the genotypes. The identified private alleles indicate that the soybean germplasm contains diverse variability that is yet to be exploited. The SNP markers revealed high diversity in the studied germplasm and found to be efficient for assessing genetic diversity in the crop. These results provide valuable information that might be utilized for assessing the genetic variability of soybean and other legume crops germplasm by breeding programmes.


2020 ◽  
Vol 56 (No. 2) ◽  
pp. 62-70 ◽  
Author(s):  
Shahril Ab Razak ◽  
Nor Helwa Ezzah Nor Azman ◽  
Rahiniza Kamaruzaman ◽  
Shamsul Amri Saidon ◽  
Muhammad Fairuz Mohd Yusof ◽  
...  

Understanding genetic diversity is a main key for crop improvement and genetic resource management. In this study, we aim to evaluate the genetic diversity of the released Malaysian rice varieties using single nucleotide polymorphism (SNP) markers. A total of 46 released Malaysian rice varieties were genotyped using 1536 SNP markers to evaluate their diversity. Out of 1536 SNPs, only 932 SNPs (60.7%) represented high quality alleles, whereas the remainder either failed to amplify or had low call rates across the samples. Analysis of the 932 SNPs revealed that a total of 16 SNPs were monomorphic. The analysis of the SNPs per chromosome revealed that the average of the polymorphic information content (PIC) value ranged from 0.173 for chromosome 12 to 0.259 for chromosome 11, with an average of 0.213 per locus. The genetic analysis of the 46 released Malaysian rice varieties using an unweighted pair group method with arithmetic mean (UPGMA) dendrogram revealed the presence of two major groups. The analysis was supported by the findings from the STRUCTURE analysis which indicated the ∆K value to be at the highest peak at K = 2, followed by K = 4. The pairwise genetic distance of the shared alleles showed that the value ranged from 0.000 (MR159–MR167) to 0.723 (MRIA–Setanjung), which suggested that MR159 and MR167 were identical, and that the highest dissimilarity was detected between MRIA 1 and Setanjung. The results of the study will be very useful for the variety identification, the proper management and conservation of the genetic resources, and the exploitation and utilisation in future breeding programmes.


2014 ◽  
Vol 10 (4) ◽  
pp. 1103-1112 ◽  
Author(s):  
Sana Ghaffari ◽  
Nejib Hasnaoui ◽  
Lalla Hasna Zinelabidine ◽  
Ali Ferchichi ◽  
José M. Martínez-Zapater ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Wang ◽  
Xiaohua Wu ◽  
Yanwei Li ◽  
Zishan Feng ◽  
Zihan Mu ◽  
...  

Germplasm collections are indispensable resources for the mining of important genes and variety improvement. To preserve and utilize germplasm collections in bottle gourd, we identified and validated a highly informative core single-nucleotide polymorphism (SNP) marker set from 1,100 SNPs. This marker set consisted of 22 uniformly distributed core SNPs with abundant polymorphisms, which were established to have strong representativeness and discriminatory power based on analyses of 206 bottle gourd germplasm collections and a multiparent advanced generation inter-cross (MAGIC) population. The core SNP markers were used to assess genetic diversity and population structure, and to fingerprint important accessions, which could provide an optimized procedure for seed authentication. Furthermore, using the core SNP marker set, we developed an accessible core population of 150 accessions that represents 100% of the genetic variation in bottle gourds. This core population will make an important contribution to the preservation and utilization of bottle gourd germplasm collections, cultivar identification, and marker-assisted breeding.


2007 ◽  
Vol 97 (12) ◽  
pp. 1543-1549 ◽  
Author(s):  
Ester Wickert ◽  
Marcos Antonio Machado ◽  
Eliana G. M. Lemos

The aim of this study was to obtain information about genetic diversity and make some inferences about the relationship of 27 strains of Xylella fastidiosa from different hosts and distinct geographical areas. Single-nucleotide polymorphism (SNP) molecular markers were identified in DNA sequences from 16 distinct regions of the genome of 24 strains of X. fastidiosa from coffee and citrus plants. Among the Brazilian strains, coffee-dependent strains have a greater number of SNPs (10 to 24 SNPs) than the citrus-based strains (2 to 12 SNPs); all the strains were compared with the sequenced strain 9a5c. The identified SNP markers were able to distinguish, for the first time, strains from citrus plants and coffee and showed that strains from coffee present higher genetic diversity than the others. These markers also have proven to be efficient for discriminating strains from the same host obtained from different geographic regions. X. fastidiosa, the causal agent of citrus variegated chlorosis, possesses genetic diversity, and the SNP markers were highly efficient for discriminating genetically close organisms.


Genome ◽  
2006 ◽  
Vol 49 (10) ◽  
pp. 1256-1264 ◽  
Author(s):  
Jinggui Fang ◽  
Tal Twito ◽  
Zhen Zhang ◽  
ChihCheng T. Chao

Genetic relationships among 50 fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars from China and Japan were investigated, using 767 amplified fragment length polymorphism (AFLP) and 103 single nucleotide polymorphism (SNP) markers. The polymorphism among the cultivars was found to be 69.77%, based on EcoR I + Mse I AFLP primer pairs. The sequence alignment of 11 group sequences, derived from 50 samples, yielded 103 SNPs; the total length of genomic sequences was 3683 bp. Among these SNPs, 73 were heterozygous in the loci of different cultivars. The SNP distribution was 58% transition, 40% transversion, and 2% InDels. There was also 1 trinucleotide deletion. AFLP and SNP markers allowed us to evaluate the genetic diversity of these 50 fruiting-mei cultivars. The 2 derived cladograms did display some differences: all cultivars formed 2 subclusters (1A and 1B) in the cladogram based on AFLP polymorphisms, and formed 3 subclusters (2A, 2B, and 2C) in the cladogram based on SNP polymorphisms; and, in the cladogram based on AFLP polymorphisms, most cultivars from the Guangdong to Fujian provinces (G–F) in China, from the Yunnan, Hunan, and Sichuan provinces (Y–S–H) in China, and from Japan grouped in cluster 1A, and 18 (78.26%) of 23 cultivars from Jiangsu to Zhejiang provinces in China (J–Z) grouped in cluster 1B. The results demonstrate that mei cultivars from Japan are clustered with cultivars from China, and support the hypothesis that mei in Japan were introduced from China. Cultivars from the J–Z region of China have more genetic similarities. Cultivars from the G–F and Y–S–H regions have fewer genetic similarities and suggest more germplasm exchanges in the past.


Sign in / Sign up

Export Citation Format

Share Document