scholarly journals Physiology Responses and Players’ Stay on the Court During a Futsal Match: A Case Study With Professional Players

2020 ◽  
Vol 11 ◽  
Author(s):  
Julio Wilson Dos-Santos ◽  
Henrique Santos da Silva ◽  
Osvaldo Tadeu da Silva Junior ◽  
Ricardo Augusto Barbieri ◽  
Matheus Luiz Penafiel ◽  
...  

Physiological responses in futsal have not been studied together with temporal information about the players’ stay on the court. The aim of this study was to compare heart rate (HR) and blood lactate concentration ([La−]) responses between 1-H and 2-H considering the time of permanency of the players on the court at each substitution in a futsal match. HR was recorded during entire match and [La−] was analyzed after each substitution of seven players. %HRmean (89.61 ± 2.31 vs. 88.03 ± 4.98 %HRmax) and [La−] mean (8.46 ± 3.01 vs. 8.17 ± 2.91 mmol·L−1) did not differ between 1-H and 2-H (ES, trivial-small). Time in intensity zones of 50–100 %HRmax differed only in 60–70 %HRmax (ES, moderate). HR coefficient of variation throughout the match was low (7%) and among the four outfield players on the court (quartets, 5%). Substitutions (2 player’s participation in each half), time of permanence on the court (7.15 ± 2.39 vs. 9.49 ± 3.80 min), ratio between time in- and out-ratio on the court (In:Outcourt = 1:1.30 ± 1:0.48 vs. 1:1.05 ± 1:0.55 min) also were similar between 1-H and 2-H (ES, moderate and small, respectively). Balancing the number of substitutions, and the In:Outcourt ratio of players in both halves of the match, playing lower time at 1-H, ~8 min for each participation in the match, made it possible to maintain intensity of the match in 2-H similar to the 1H. These results are a good guidance to coaches and for application in future studies.

2020 ◽  
Vol 75 (1) ◽  
pp. 95-102
Author(s):  
David Williamson ◽  
Earl McCarthy ◽  
Massimiliano Ditroilo

Abstract Ultra Short Race Pace training (USRPT) is an emerging training modality devised in 2011 to deviate from high-volume swimming training that is typically prescribed. USRPT aims to replicate the exact demands of racing, through its unique prescription of race-pace velocity sets with short rest intervals. It has been surmised, with little physiological evidence, that USRPT provides swimmers with the best opportunity to optimize the conditioning, technique, and psychology aspects of racing at the most specific velocity of the relevant event, with low blood lactate concentration. The aim of this study was to examine acute physiological responses of USRPT. Fourteen swimmers were recruited to perform a USRPT set: 20 x 25 m freestyle with a 35-s rest interval. Swimmers were required to maintain the velocity of their 100 m personal best time for each sprint. Sprint performance, blood lactate, heart rate and the RPE were measured. Blood lactate was taken before, during (after every 4 sprints) and 3 minutes after the USRPT protocol. Heart rate monitors were used to profile the heart rate. Athletes reported the RPE before- and after completion of the USRPT set. Sprint times increased by 3.3-10.8% when compared to the first sprint (p < 0.01). There was high blood lactate concentration (13.6 ± 3.1mmol/l), a significant change in the RPE from 8 ± 1.6 to 18 ± 1.6 (p < 0.01) and a substantially high heart rate profile with an average HRmax of 188 ± 9 BPM. The results show the maximal intensity nature of USRPT and portray it as an anaerobic style of training.


Sports ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Jeffrey Rothschild ◽  
George H. Crocker

The purpose of this study was to examine the effects of a 2-km swim on markers of subsequent cycling performance in well-trained, age-group triathletes. Fifteen participants (10 males, five females, 38.3 ± 8.4 years) performed two progressive cycling tests between two and ten days apart, one of which was immediately following a 2-km swim (33.7 ± 4.1 min). Cycling power at 4-mM blood lactate concentration decreased after swimming by an average of 3.8% (p = 0.03, 95% CI −7.7, 0.2%), while heart rate during submaximal cycling (220 W for males, 150 W for females) increased by an average of 4.0% (p = 0.02, 95% CI 1.7, 9.7%), compared to cycling without prior swimming. Maximal oxygen consumption decreased by an average of 4.0% (p = 0.01, 95% CI −6.5, −1.4%), and peak power decreased by an average of 4.5% (p < 0.01, 95% CI −7.3, −2.3%) after swimming, compared to cycling without prior swimming. Results from this study suggest that markers of submaximal and maximal cycling are impaired following a 2-km swim.


2018 ◽  
Vol 97 (10) ◽  
pp. 1274-1280 ◽  
Author(s):  
Ke Lu ◽  
Malin Holzmann ◽  
Fahrad Abtahi ◽  
Kaj Lindecrantz ◽  
Pelle G Lindqvist ◽  
...  

2016 ◽  
Vol 37 (5) ◽  
pp. 536-543 ◽  
Author(s):  
Rosangela Akemi Hoshi ◽  
Luiz Carlos Marques Vanderlei ◽  
Moacir Fernandes de Godoy ◽  
Fábio do Nascimento Bastos ◽  
Jayme Netto ◽  
...  

Retos ◽  
2016 ◽  
pp. 54-58 ◽  
Author(s):  
Aitor Iturricastillo Urteaga ◽  
Javier Yanci Irigoyen ◽  
Itziar Barrenetxea Iriondo ◽  
Cristina Granados Dominguez

El principal objetivo del estudio fue analizar la intensidad de juego en jugadores de baloncesto en silla de ruedas (BSR) durante los partidos de play-off. En este estudio participaron nueve jugadores masculinos de BSR de primera división (34,8 ± 7,8 años). En total se analizaron seis partidos y los participantes fueron divididos en tres grupos según los minutos jugados: jugadores que jugaron 30-40 minutos (BSR30-40), jugadores que jugaron 20-29 minutos (BSR20-30) y los que jugaron entre 1 segundo y 19 minutos (BSR1-19). Durante todos los partidos se monitorizó la frecuencia cardíaca (FC), y además, se obtuvo la temperatura timpánica y la concentración de lactato sanguíneo antes e inmediatamente después de cada partido. Se encontraron diferencias significativas (P<0,05) en todas las zonas de intensidad entre el grupo BSR30-40 y BSR1-19. Los jugadores BSR30-40 pasaron un 36,4% del tiempo total por encima del 85% de la FCmáx, mientras que los jugadores BSR20-30 y BSR1-19 solo pasaron un 16,1 y un 9,2% del tiempo total. En todos los grupos tanto la temperatura timpánica (1,5-2,0%, P<0,05) como la concentración de lactato (81,1-125,0%, P<0,05) aumentó significativamente. Los resultados obtenidos en nuestro estudio exponen que los jugadores del grupo BSR30-40 pasaron mayor porcentaje de tiempo a alta intensidad (>85% de la FCmáx), con un aumento significativo de la temperatura y la concentración de lactato sanguíneo. Los entrenadores y preparadores físicos deberían tener en cuenta estas diferencias fisiológicas en función de los minutos jugados a la hora de planificar la temporada y los descansos post partido.Abstract. The main objective of the study was to analyze the game intensity in wheelchair basketball players (WB) during play-off matches. This study involved nine WB players of Spanish first division league (34.8 ± 7.8 years). Six play-off matches were analyzed and participants were divided into three groups according to the minutes they had played: players who had played between 30-40 minutes (WB30-40), players who had played between 20-30 minutes (WB20-30) and players who had played between 1 second and 20 minutes (WB1-19). For every game the heart rate (HR) was monitored by telemetry, and in addition, the tympanic temperature and blood lactate concentration samples were obtained before and immediately after each match. Significant differences (P<0.05) were observed in all intensity zones between WB30-40 and WB1-19 groups. The WB30-40 players spent 36.4% of the total time over 85% of maximum HR, while WB20-30 and WB1-19 players only spent 16.1 and 9.2% of the total time. Moreover, in all groups both tympanic temperature (from 1.5 to 2.0%, P<0.05) and lactate concentration (81.1 to 125.0%, P <0.05) increased significantly. The game intensity monitored by HR is different for WB players according to the minutes they had played (WB30-40, WB20-30 and WB1-19). The results of our study showed that the WB30-40 group obtained higher percentage of time spent at high intensity (> 85% of maximum HR) than other groups, with a significant increase in body temperature and blood lactate concentration. Coaches and physical trainers should be aware of these physiological differences when planning the season and post-match sessions.


2018 ◽  
Vol 16 (1) ◽  
pp. 149
Author(s):  
Georgia Rozi ◽  
Vassilios Thanopoulos ◽  
Milivoj Dopsaj

The purpose of this study was to investigate the differences in maximum concentration of lactic acid in the blood, heart rate and performance time on the test of 4x50m freestyle swimming on a sample of two protocols: a) one breath every 3 strokes and b) 14-15m of every 50m were swum with underwater movement of the feet without breathing and a rest with one breath every 3 strokes (apnea). The sample consisted of 15 female swimmers of the competitive level aged: 15.0 ± 1.0 years. Their basic style was the freestyle. To determine the maximum blood lactate concentration, capillary blood samples were taken in the 3rd, 5th, 7th minute and analyzed by the automatic analyzer Scout Lactate Germany. We also measured the heart rate immediately after each swimming protocol. The ANOVA showed that there were no statistically significant differences between the two protocols. Maximum lactate concentration in the protocol with apnea was 10.02 ± 3.05mmol / L and without apnea 8.9 ± 3.5mmol / L. Heart rate was 186 ± 6 and 186 ± 7 b/min respectively, and performance time 140.04 ± 8.13 and 138.73 ± 8.01sec in swimmers aged 14-16. Swimming apnea needs to be studied in a larger age sample with more variables to ascertain the effects on sprint swimming.


Author(s):  
Kamil Michalik ◽  
Kuba Korta ◽  
Natalia Danek ◽  
Marcin Smolarek ◽  
Marek Zatoń

Background: The linearly increased loading (RAMP) incremental test is a method commonly used to evaluate physical performance in a laboratory, but the best-designed protocol remains unknown. The aim of this study was to compare the selected variables used in training control resulting from the two different intensities of RAMP incremental tests. Methods: Twenty healthy and physically active men took part in this experiment. The tests included two visits to a laboratory, during which anthropometric measurements, incremental test on a cycle ergometer, and examinations of heart rate and blood lactate concentration were made. The cross-over study design method was used. The subjects underwent a randomly selected RAMP test with incremental load: 0.278 W·s−1 or 0.556 W·s−1. They performed the second test a week later. Results: Peak power output was significantly higher by 51.69 W (p < 0.001; t = 13.10; ES = 1.13) in the 0.556 W·s−1 group. Total work done was significantly higher in the 0.278 W·s−1 group by 71.93 kJ (p < 0.001; t = 12.55; ES = 1.57). Maximal heart rate was significantly higher in the 0.278 W·s−1 group by 3.30 bpm (p < 0.01; t = 3.72; ES = 0.48). There were no statistically significant differences in heart rate recovery and peak blood lactate. Conclusions: We recommend use of the 0.556 W·s−1 RAMP protocol because it is of shorter duration compared with 0.278 W·s−1 and as such practically easier and of less effort for subjects.


Sign in / Sign up

Export Citation Format

Share Document