scholarly journals THE INFLUENCE OF APNEA IN PHYSIOLOGICAL RESPONSES OF FEMALE SWIMMERS

2018 ◽  
Vol 16 (1) ◽  
pp. 149
Author(s):  
Georgia Rozi ◽  
Vassilios Thanopoulos ◽  
Milivoj Dopsaj

The purpose of this study was to investigate the differences in maximum concentration of lactic acid in the blood, heart rate and performance time on the test of 4x50m freestyle swimming on a sample of two protocols: a) one breath every 3 strokes and b) 14-15m of every 50m were swum with underwater movement of the feet without breathing and a rest with one breath every 3 strokes (apnea). The sample consisted of 15 female swimmers of the competitive level aged: 15.0 ± 1.0 years. Their basic style was the freestyle. To determine the maximum blood lactate concentration, capillary blood samples were taken in the 3rd, 5th, 7th minute and analyzed by the automatic analyzer Scout Lactate Germany. We also measured the heart rate immediately after each swimming protocol. The ANOVA showed that there were no statistically significant differences between the two protocols. Maximum lactate concentration in the protocol with apnea was 10.02 ± 3.05mmol / L and without apnea 8.9 ± 3.5mmol / L. Heart rate was 186 ± 6 and 186 ± 7 b/min respectively, and performance time 140.04 ± 8.13 and 138.73 ± 8.01sec in swimmers aged 14-16. Swimming apnea needs to be studied in a larger age sample with more variables to ascertain the effects on sprint swimming.

2009 ◽  
Vol 4 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Michael Wilkinson ◽  
Damon Leedale-Brown ◽  
Edward M. Winter

Purpose:We examined the reproducibility of performance and physiological responses on a squash-specific incremental test.Methods:Eight trained squash players habituated to procedures with two prior visits performed an incremental squash test to volitional exhaustion on two occasions 7 days apart. Breath-by-breath oxygen uptake ( Vo2) and heart rate were determined continuously using a portable telemetric system. Blood lactate concentration at the end of 4-min stages was assessed to determine lactate threshold. Once threshold was determined, test speed was increased every minute until volitional exhaustion for assessment of maximal oxygen uptake (Vo2max), maximum heart rate (HRmax), and performance time. Economy was taken as the 60-s mean of Vo2 in the final minute of the fourth stage (below lactate threshold for all participants). Typical error of measurement (TEM) with associated 90% confidence intervals, limits of agreement, paired sample t tests, and least products regression were used to assess the reproducibility of scores.Results:Performance time (TEM 27 s, 4%, 90% CI 19 to 49 s) Vo2max (TEM 2.4 mL·kg−1·min−1, 4.7%, 90% CI 1.7 to 4.3 mL·kg−1·min−1), maximum heart rate (TEM 2 beats·min−1, 1.3%, 90% CI 2 to 4 beats·min−1), and economy (TEM 1.6 mL·kg−1·min−1, 4.1%, 90% CI 1.1 to 2.8 mL·kg−1·min−1) were reproducible.Conclusions:The results suggest that endurance performance and physiological responses to a squash-specific fitness test are reproducible.


Sports ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 25 ◽  
Author(s):  
Ioannis Nikitakis ◽  
Giorgos Paradisis ◽  
Gregory Bogdanis ◽  
Argyris Toubekis

Background: The purpose of this study was to compare physiological responses during continuous and intermittent swimming at intensity corresponding to critical speed (CS: slope of the distance vs. time relationship using 200 and 400-m tests) with maximal lactate steady state (MLSS) in children and adolescents. Methods: CS and the speed corresponding to MLSS (sMLSS) were calculated in ten male children (11.5 ± 0.4 years) and ten adolescents (15.8 ± 0.7 years). Blood lactate concentration (BL), oxygen uptake ( V · O2), and heart rate (HR) at sMLSS were compared to intermittent (10 × 200-m) and continuous swimming corresponding to CS. Results: CS was similar to sMLSS in children (1.092 ± 0.071 vs. 1.083 ± 0.065 m·s−1; p = 0.12) and adolescents (1.315 ± 0.068 vs. 1.297 ± 0.056 m·s−1; p = 0.12). However, not all swimmers were able to complete 30 min at CS and BL was higher at the end of continuous swimming at CS compared to sMLSS (children: CS: 4.0 ± 1.8, sMLSS: 3.4 ± 1.5; adolescents: CS: 4.5 ± 2.3, sMLSS: 3.1 ± 0.8 mmol·L−1; p < 0.05). V · O2 and HR in continuous swimming at CS were not different compared to sMLSS (p > 0.05). BL, V · O2 and HR in 10 × 200-m were similar to sMLSS and no different between groups. Conclusion: Intermittent swimming at CS presents physiological responses similar to sMLSS. Metabolic responses of continuous swimming at CS may not correspond to MLSS in some children and adolescent swimmers.


2020 ◽  
Vol 75 (1) ◽  
pp. 95-102
Author(s):  
David Williamson ◽  
Earl McCarthy ◽  
Massimiliano Ditroilo

Abstract Ultra Short Race Pace training (USRPT) is an emerging training modality devised in 2011 to deviate from high-volume swimming training that is typically prescribed. USRPT aims to replicate the exact demands of racing, through its unique prescription of race-pace velocity sets with short rest intervals. It has been surmised, with little physiological evidence, that USRPT provides swimmers with the best opportunity to optimize the conditioning, technique, and psychology aspects of racing at the most specific velocity of the relevant event, with low blood lactate concentration. The aim of this study was to examine acute physiological responses of USRPT. Fourteen swimmers were recruited to perform a USRPT set: 20 x 25 m freestyle with a 35-s rest interval. Swimmers were required to maintain the velocity of their 100 m personal best time for each sprint. Sprint performance, blood lactate, heart rate and the RPE were measured. Blood lactate was taken before, during (after every 4 sprints) and 3 minutes after the USRPT protocol. Heart rate monitors were used to profile the heart rate. Athletes reported the RPE before- and after completion of the USRPT set. Sprint times increased by 3.3-10.8% when compared to the first sprint (p < 0.01). There was high blood lactate concentration (13.6 ± 3.1mmol/l), a significant change in the RPE from 8 ± 1.6 to 18 ± 1.6 (p < 0.01) and a substantially high heart rate profile with an average HRmax of 188 ± 9 BPM. The results show the maximal intensity nature of USRPT and portray it as an anaerobic style of training.


2006 ◽  
Vol 31 (6) ◽  
pp. 709-716 ◽  
Author(s):  
Argyris G. Toubekis ◽  
Ilias Smilios ◽  
Gregory C. Bogdanis ◽  
Georgios Mavridis ◽  
Savvas P. Tokmakidis

Active recovery reduces blood lactate concentration faster than passive recovery and, when the proper intensity is applied, a positive effect on performance is expected. The purpose of the study was to investigate the effect of different intensities of active recovery on performance during repeated sprint swimming. Nine male well-trained swimmers performed 8 repetitions of 25 m sprints (8 × 25 m) interspersed with 45 s intervals, followed by a 50 m sprint test 6 min later. During the 45 s and 6 min interval periods, swimmers either rested passively (PAS) or swam at an intensity corresponding to 50% (ACT50) and 60% (ACT60) of their individual 100 m velocity. Blood lactate was higher during PAS compared with ACT50 and ACT60 trials (p < 0.05), whereas plasma ammonia and glycerol concentration were not different between trials (p > 0.05). Mean performance time for the 8 × 25 m sprints was better in the PAS compared with the ACT50 and ACT60 trials (PAS: 13.10 ± 0.07 vs. ACT50: 13.43 ± 0.10 and ACT60: 13.47 ± 0.10s, p < 0.05). The first 25 m sprint was not different across trials (p > 0.05), but performance decreased after sprint 2 during active recovery trials (ACT50 and ACT60) compared with the passive recovery (PAS) trial (p < 0.05). Performance time for the 50 m sprint performed 6 min after the 8 × 25 m sprints was no different between trials (p > 0.05). These results indicate that active recovery at intensities corresponding to 50% and 60% of the 100 m velocity during repeated swimming sprints decreases performance. Active recovery reduces blood lactate concentration, but does not affect performance on a 50 m sprint when 6 min recovery is provided. Passive recovery is advised during short-interval repeated sprint training in well-trained swimmers.


2010 ◽  
Vol 20 (3) ◽  
pp. 191-197 ◽  
Author(s):  
Nicholas Gant ◽  
Ajmol Ali ◽  
Andrew Foskett

Carbohydrate and caffeine are known to independently improve certain aspects of athletic performance. However, less is understood about physiological and performance outcomes when these compounds are coingested in a rehydration and carbohydrate-replacement strategy. The aim of this study was to examine the influence of adding a moderate dose of caffeine to a carbohydrate solution during prolonged soccer activity. Fifteen male soccer players performed two 90-min intermittent shuttle-running trials. They ingested a carbohydrate-electrolyte solution (CON) providing a total of 1.8 g/kg body mass (BM) of carbohydrate or a similar solution with added caffeine (CAF; 3.7 mg/kg BM). Solutions were ingested 1 hr before exercise and every 15 min during the protocol. Soccer passing skill and countermovement-jump height (CMJ) were quantified before exercise and regularly during exercise. Sprinting performance, heart rate, blood lactate concentration (La) and the subjective experiences of participants were measured routinely. Mean 15-m sprint time was faster during CAF (p = .04); over the final 15 min of exercise mean sprint times were CAF 2.48 ± 0.15 s vs. CON 2.59 ± 0.2 s. Explosive leg power (CMJ) was improved during CAF (52.9 ± 5.8 vs. CON 51.7 ± 5.7 cm, p = .03). Heart rate was elevated throughout CAF, and ratings of pleasure were significantly enhanced. There were no significant differences in passing skill, rating of perceived exertion, La, or body-mass losses between trials. The addition of caffeine to the carbohydrate-electrolyte solution improved sprinting performance, countermovement jumping, and the subjective experiences of players. Caffeine appeared to offset the fatigue-induced decline in self-selected components of performance.


2020 ◽  
Vol 11 ◽  
Author(s):  
Julio Wilson Dos-Santos ◽  
Henrique Santos da Silva ◽  
Osvaldo Tadeu da Silva Junior ◽  
Ricardo Augusto Barbieri ◽  
Matheus Luiz Penafiel ◽  
...  

Physiological responses in futsal have not been studied together with temporal information about the players’ stay on the court. The aim of this study was to compare heart rate (HR) and blood lactate concentration ([La−]) responses between 1-H and 2-H considering the time of permanency of the players on the court at each substitution in a futsal match. HR was recorded during entire match and [La−] was analyzed after each substitution of seven players. %HRmean (89.61 ± 2.31 vs. 88.03 ± 4.98 %HRmax) and [La−] mean (8.46 ± 3.01 vs. 8.17 ± 2.91 mmol·L−1) did not differ between 1-H and 2-H (ES, trivial-small). Time in intensity zones of 50–100 %HRmax differed only in 60–70 %HRmax (ES, moderate). HR coefficient of variation throughout the match was low (7%) and among the four outfield players on the court (quartets, 5%). Substitutions (2 player’s participation in each half), time of permanence on the court (7.15 ± 2.39 vs. 9.49 ± 3.80 min), ratio between time in- and out-ratio on the court (In:Outcourt = 1:1.30 ± 1:0.48 vs. 1:1.05 ± 1:0.55 min) also were similar between 1-H and 2-H (ES, moderate and small, respectively). Balancing the number of substitutions, and the In:Outcourt ratio of players in both halves of the match, playing lower time at 1-H, ~8 min for each participation in the match, made it possible to maintain intensity of the match in 2-H similar to the 1H. These results are a good guidance to coaches and for application in future studies.


2017 ◽  
Vol 29 (2) ◽  
pp. 186-193 ◽  
Author(s):  
Neil Gibson ◽  
Callum Brownstein ◽  
Derek Ball ◽  
Craig Twist

Purpose:To examine the physiological and perceptual responses of youth footballers to a repeated sprint protocol employing standardized and self-selected recovery.Methods:Eleven male participants (13.7 ± 1.1 years) performed a repeated sprint assessment comprising 10 × 30 m efforts. Employing a randomized cross-over design, repeated sprints were performed using 30 s and self-selected recovery periods. Heart rate was monitored continuously with ratings of perceived exertion (RPE) and lower body muscle power measured 2 min after the final sprint. The concentration of blood lactate was measured at 2, 5 and 7 min post sprinting. Magnitude of effects were reported using effect size (ES) statistics ± 90% confidence interval and percentage differences. Differences between trials were examined using paired student t tests (p < .05).Results:Self-selected recovery resulted in most likely shorter recovery times (57.7%; ES 1.55 ± 0.5; p < .01), a most likely increase in percentage decrement (65%; ES 0.36 ± 0.21; p = .12), very likely lower heart rate recovery (-58.9%; ES -1.10 ± 0.72; p = .05), and likely higher blood lactate concentration (p = .08–0.02). Differences in lower body power and RPE were unclear (p > .05).Conclusion:Self-selected recovery periods compromise repeated sprint performance.


2017 ◽  
Vol 12 (2) ◽  
pp. 152-160 ◽  
Author(s):  
Rachel Borne ◽  
Christophe Hausswirth ◽  
François Bieuzen

Purpose:To investigate the effect of different limb blood-flow levels on cycling-performance recovery, blood lactate concentration, and heart rate.Methods:Thirty-three high-intensity intermittent-trained athletes completed two 30-s Wingate anaerobic test sessions, 3 × 30-s (WAnT 1–3) and 1 × 30-s (WAnT 4), on a cycling ergometer. WAnT 1–3 and WAnT 4 were separated by a randomly assigned 24-min recovery intervention selected from among blood-flow restriction, passive rest, placebo stimulation, or neuromuscular electrical-stimulation-induced blood flow. Calf arterial inflow was measured by venous occlusion plethysmography at regular intervals throughout the recovery period. Performance was measured in terms of peak and mean power output during WAnT 1 and WAnT 4.Results:After the recovery interventions, a large (r = .68 [90% CL .42; .83]) and very large (r = .72 (90% CL .49; .86]) positive correlation were observed between the change in calf arterial inflow and the change in mean and peak power output, respectively. Calf arterial inflow was significantly higher during the neuromuscular-electrical-stimulation recovery intervention than with the blood-flow-restriction, passive-rest, and placebo-stimulation interventions (P < .001). This corresponds to the only intervention that allowed performance recovery (P > .05). No recovery effect was linked to heart rate or blood lactate concentration levels.Conclusions:For the first time, these data support the existence of a positive correlation between an increase in blood flow and performance recovery between bouts of high-intensity exercise. As a practical consideration, this effect can be obtained by using neuromuscular electrical stimulation-induced blood flow since this passive, simple strategy could be easily applied during short-term recovery.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 213
Author(s):  
Domingo Jesús Ramos-Campo ◽  
Silvia Pérez-Piñero ◽  
Juan Carlos Muñoz-Carrillo ◽  
Francisco Javier López-Román ◽  
Esther García-Sánchez ◽  
...  

Due to COVID-19, wearing a face mask to reduce virus transmission is currently mandatory in some countries when participants practice exercise in sports centers. Therefore, the aim of the present study was to analyze the effect of wearing a surgical or FFP2 mask during a resistance training session. Fourteen people with sarcopenia (age: 59.40 ± 5.46 years; weight: 68.78 ± 8.31 kg; height: 163.84 ± 9.08 cm) that participated in the study performed three training sessions in a randomized order: 4 sets of 10 repetitions of a half-squat at 60% of the one-repetition maximum and 90 s of rest between set and were either (a) without a mask (NM), (b) wearing a surgical face mask (SM), and (c) wearing a FFP2 face mask (FFP2). We found that wearing face masks had no effect on strength performance (session mean propulsive velocity (m/s): WM: 0.396 ± 0.042; SM: 0.387 ± 0.037; and FFP2: 0.391 ± 0.042 (p = 0.918)). Additionally, no impact of wearing a mask was found on heart rate, heart rate variability, blood lactate concentration (WM: 4.17 ± 1.89; SM: 4.49 ± 2.07; and FFP2: 5.28 ± 2.45 mmol/L (p = 0.447)), or rating of perceived exertion. Wearing a surgical or FFP2 face mask during a resistance training session resulted in similar strength performance and physiological responses than the same exercise without a mask in persons with sarcopenia.


2020 ◽  
Vol 60 (2) ◽  
pp. 252-262
Author(s):  
Benhammou Saddek ◽  
Jérémy B.J. Coquart ◽  
Laurent Mourot ◽  
Belkadi Adel ◽  
Mokkedes Moulay Idriss ◽  
...  

SummaryThe aims of this study were (a): to compare maximal physiological responses (maximal heart rate: HRmax and blood lactate concentration: [La-]) and maximal aerobic speed (MAS) achieved during a gold standard test (T-VAM) to those during a new test entitled: the 150-50 Intermittent Test (150-50IT), and (b): to test the reliability of the 150-50IT. Eighteen middle-distance runners performed, in a random order, the T-VAM and the 150-50IT. Moreover, the runners performed a second 150-50IT (retest). The results of this study showed that the MAS obtained during 150-50IT were significantly higher than the MAS during the T-VAM (19.1 ± 0.9 vs. 17.9 ± 0.9 km.h−1, p < 0.001). There was also significant higher values in HRmax (193 ± 4 vs. 191 ± 2 bpm, p = 0.011), [La-] (11.4 ± 0.4 vs. 11.0 ± 0.5 mmol.L−1, p = 0.039) during the 150-50IT. Nevertheless, significant correlations were noted for MAS (r = 0.71, p = 0.001) and HRmax (r = 0.63, p = 0.007). MAS obtained during the first 150-50IT and the retest were not significantly different (p = 0.76) and were significantly correlated (r = 0.94, p < 0.001, intraclass correlation coefficient = 0.93 and coefficient of variation = 6.8 %). In conclusion, the 150-50IT is highly reproducible, but the maximal physiological responses derived from both tests cannot be interchangeable in the design of training programs.


Sign in / Sign up

Export Citation Format

Share Document