scholarly journals Skin Conductance Responses of Learner and Licensed Drivers During a Hazard Perception Task

2021 ◽  
Vol 12 ◽  
Author(s):  
Theresa J. Chirles ◽  
Johnathon P. Ehsani ◽  
Neale Kinnear ◽  
Karen E. Seymour

Background: While advanced driver assistance technologies have the potential to increase safety, there is concern that driver inattention resulting from overreliance on these features may result in crashes. Driver monitoring technologies to assess a driver’s state may be one solution. The purpose of this study was to replicate and extend the research on physiological responses to common driving hazards and examine how these may differ based on driving experience.Methods: Learner and Licensed drivers viewed a Driving Hazard Perception Task while electrodermal activity (EDA) was measured. The task presented 30 Event (hazard develops) and 30 Non-Event (routine driving) videos. A skin conductance response (SCR) score was calculated for each participant based on the percentage of videos that elicited an SCR.Results: Analysis of the SCR score during Event videos revealed a medium effect (d = 0.61) of group differences, whereby Licensed drivers were more likely to have an SCR than Learner drivers. Interaction effects revealed Licensed drivers were more likely to have an SCR earlier in the Event videos compared to the end, and the Learner drivers were more likely to have an SCR earlier in the Non-Event videos compared to the end.Conclusion: Our results support the viability of using SCR during driving videos as a marker of hazard anticipation differing based on experience. The interaction effects may illustrate situational awareness in licensed drivers and deficiencies in sustained vigilance among learner drivers. The findings demand further examination if physiological measures are to be validated as a tool to inform driver potential performance in an increasingly automated driving environment.

Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Johannes Ossig ◽  
Stephanie Cramer ◽  
Klaus Bengler

In the human-centered research on automated driving, it is common practice to describe the vehicle behavior by means of terms and definitions related to non-automated driving. However, some of these definitions are not suitable for this purpose. This paper presents an ontology for automated vehicle behavior which takes into account a large number of existing definitions and previous studies. This ontology is characterized by an applicability for various levels of automated driving and a clear conceptual distinction between characteristics of vehicle occupants, the automation system, and the conventional characteristics of a vehicle. In this context, the terms ‘driveability’, ‘driving behavior’, ‘driving experience’, and especially ‘driving style’, which are commonly associated with non-automated driving, play an important role. In order to clarify the relationships between these terms, the ontology is integrated into a driver-vehicle system. Finally, the ontology developed here is used to derive recommendations for the future design of automated driving styles and in general for further human-centered research on automated driving.


Information ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 162
Author(s):  
Soyeon Kim ◽  
René van Egmond ◽  
Riender Happee

In automated driving, the user interface plays an essential role in guiding transitions between automated and manual driving. This literature review identified 25 studies that explicitly studied the effectiveness of user interfaces in automated driving. Our main selection criterion was how the user interface (UI) affected take-over performance in higher automation levels allowing drivers to take their eyes off the road (SAE3 and SAE4). We categorized user interface (UI) factors from an automated vehicle-related information perspective. Short take-over times are consistently associated with take-over requests (TORs) initiated by the auditory modality with high urgency levels. On the other hand, take-over requests directly displayed on non-driving-related task devices and augmented reality do not affect take-over time. Additional explanations of take-over situation, surrounding and vehicle information while driving, and take-over guiding information were found to improve situational awareness. Hence, we conclude that advanced user interfaces can enhance the safety and acceptance of automated driving. Most studies showed positive effects of advanced UI, but a number of studies showed no significant benefits, and a few studies showed negative effects of advanced UI, which may be associated with information overload. The occurrence of positive and negative results of similar UI concepts in different studies highlights the need for systematic UI testing across driving conditions and driver characteristics. Our findings propose future UI studies of automated vehicle focusing on trust calibration and enhancing situation awareness in various scenarios.


Author(s):  
John Paul Plummer ◽  
Anastasia Diamond ◽  
Alex Chaparro ◽  
Rui Ni

Hazard perception (HP) is an important aspect of driving performance and is associated with crash risk. In the current study, we investigate the effect of roadway environment (city vs. highway) and expertise on HP. HP was measured using HP clips that evaluated response lag (defined as the time from the participant’s response to the end of the clip) and fuzzy signal detection theory metrics of response criterion and sensitivity. Forty videos were used: 20 from highway environments and 20 from city environments. Forty-eight participants with a range of driving experience as assessed by the years since obtaining a license (less than 1 year to 24 years) completed the study. There were differences between city and highway environments in response lag and response bias; participants responded earlier to the hazards in the highway environment and exhibited a more liberal response bias. Driving experience was significantly correlated to response lag. When the video clips were categorized by environment, driving experience was only significantly correlated with performance for the city environment.


2021 ◽  
Author(s):  
Vishnu Radhakrishnan ◽  
Natasha Merat ◽  
Tyron Louw ◽  
Rafael Goncalves ◽  
Wei Lyu ◽  
...  

This driving simulator study, conducted as a part of Horizon2020-funded L3Pilot project, investigated how different car-following situations affected driver workload, within the context of vehicle automation. Electrocardiogram (ECG) and electrodermal activity (EDA)-based physiological metrics were used as objective indicators of workload, along with self-reported workload ratings. A total of 32 drivers were divided into two equal groups, based on whether they engaged in a non-driving related task (NDRT) during automation or monitored the drive. Drivers in both groups were exposed to two counterbalanced experimental drives, lasting ~18 minutes each, of Short (0.5 s) and Long (1.5 s) Time Headway conditions during automated car-following (ACF), which was followed by a takeover that happened with or without a lead vehicle. We observed that the workload on the driver due to the NDRT was significantly higher than both monitoring the drive during ACF and manual car-following (MCF). Furthermore, the results indicated that shorter THWs and the presence of a lead vehicle can significantly increase driver workload during takeover scenarios, potentially affecting the safety of the vehicle. This warrants further research into understanding safe time headway thresholds to be maintained by automated vehicles, without placing additional mental or attentional demands on the driver. To conclude, our results indicated that ECG and EDA signals are sensitive to variations in workload, and hence, warrants further investigation on the value of combining these two signals to assess driver workload in real-time, to help the system respond appropriately to the limitations of the driver and predict their performance in driving task if and when they have to resume manual control of the vehicle.


Author(s):  
Yuan Shi ◽  
Wenhui Huang ◽  
Federico Cheli ◽  
Monica Bordegoni ◽  
Giandomenico Caruso

Abstract A bursting number of achievements in the autonomous vehicle industry have been obtained during the past decades. Various systems have been developed to make automated driving possible. Due to the algorithm used in the autonomous vehicle system, the performance of the vehicle differs from one to another. However, very few studies have given insight into the influence caused by implementing different algorithms from a human factors point of view. Two systems based on two algorithms with different characteristics are utilized to generate the two driving styles of the autonomous vehicle, which are implemented into a driving simulator in order to create the autonomous driving experience. User’s skin conductance (SC) data, which enables the evaluation of user’s cognitive workload and mental stress were recorded and analyzed. Subjective measures were applied by filling out Swedish occupational fatigue inventory (SOFI-20) to get a user self-reporting perspective view of their behavior changes along with the experiments. The results showed that human’s states were affected by the driving styles of different autonomous systems, especially in the period of speed variation. By analyzing users’ self-assessment data, a correlation was observed between the user “Sleepiness” and the driving style of the autonomous vehicle. These results would be meaningful for the future development of the autonomous vehicle systems, in terms of balancing the performance of the vehicle and user’s experience.


Author(s):  
Dengbo He ◽  
Birsen Donmez

State-of-the-art vehicle automation requires drivers to visually monitor the driving environment and the automation (through interfaces and vehicle’s actions) and intervene when necessary. However, as evidenced by recent automated vehicle crashes and laboratory studies, drivers are not always able to step in when the automation fails. Research points to the increase in distraction or secondary-task engagement in the presence of automation as a potential reason. However, previous research on secondary-task engagement in automated vehicles mainly focused on experienced drivers. This issue may be amplified for novice drivers with less driving skill. In this paper, we compared secondary-task engagement behaviors of novice and experienced drivers both in manual (non-automated) and automated driving settings in a driving simulator. A self-paced visual-manual secondary task presented on an in-vehicle display was utilized. Phase 1 of the study included 32 drivers (16 novice) who drove the simulator manually. In Phase 2, another set of 32 drivers (16 novice) drove with SAE-level-2 automation. In manual driving, there were no differences between novice and experienced drivers’ rate of manual interactions with the secondary task (i.e., taps on the display). However, with automation, novice drivers had a higher manual interaction rate with the task than experienced drivers. Further, experienced drivers had shorter average glance durations toward the task than novice drivers in general, but the difference was larger with automation compared with manual driving. It appears that with automation, experienced drivers are more conservative in their secondary-task engagement behaviors compared with novice drivers.


Author(s):  
Shiyan Yang ◽  
Jonny Kuo ◽  
Michael G. Lenné

Objective The paper aimed to investigate glance behaviors under different levels of distraction in automated driving (AD) and understand the impact of distraction levels on driver takeover performance. Background Driver distraction detrimentally affects takeover performance. Glance-based distraction measurement could be a promising method to remind drivers to maintain enough attentiveness before the takeover request in partially AD. Method Thirty-six participants were recruited to drive a Tesla Model S in manual and Autopilot modes on a test track while engaging in secondary tasks, including temperature-control, email-sorting, and music-selection, to impose low and high distractions. During the test drive, participants needed to quickly change the lane as if avoiding an immediate road hazard if they heard an unexpected takeover request (an auditory warning). Driver state and behavior over the test drive were recorded in real time by a driver monitoring system and several other sensors installed in the Tesla vehicle. Results The distribution of off-road glance duration was heavily skewed (with a long tail) by high distractions, with extreme glance duration more than 30 s. Moreover, being eyes-off-road before takeover could cause more delay in the urgent takeover reaction compared to being hands-off-wheel. Conclusion The study measured off-road glance duration under different levels of distraction and demonstrated the impacts of being eyes-off-road and hands-off-wheel on the following takeover performance. Application The findings provide new insights about engagement in Level 2 AD and are useful for the design of driver monitoring technologies for distraction management.


Sign in / Sign up

Export Citation Format

Share Document