scholarly journals Dysnumeria in Sign Language: Impaired Construction of the Decimal Structure in Reading Multidigit Numbers in a Deaf ISL Signer

2021 ◽  
Vol 12 ◽  
Author(s):  
Naama Friedmann ◽  
Neta Haluts ◽  
Doron Levy

We report on the first in-depth analysis of a specific type of dysnumeria, number-reading deficit, in sign language. The participant, Nomi, is a 45-year-old signer of Israeli Sign Language (ISL). In reading multidigit numbers (reading-then-signing written numbers, the counterpart of reading aloud in spoken language), Nomi made mainly decimal, number-structure errors– reading the correct digits in an incorrect (smaller) decimal class, mainly in longer numbers of 5–6-digits. A unique property of ISL allowed us to rule out the numeric-visual analysis as the source of Nomi's dysnumeria: In ISL, when the multidigit number signifies the number of objects, it is signed with a decimal structure, which is marked morphologically (e.g., 84 → Eight-Tens Four); but a parallel system exists (e.g., for height, age, bus numbers), in which multidigit numbers are signed non-decimally, as a sequence of number-signs (e.g., 84 → Eight, Four). When Nomi read and signed the exact same numbers, but this time non-decimally, she performed significantly better. Additional tests supported the conclusion that her early numeric-visual abilities are intact: she showed flawless detection of differences in length, digit-order, or identity in same-different tasks. Her decimal errors did not result from a number-structure deficit in the phonological-sign output either (no decimal errors in repeating the same numbers, nor in signing multidigit numbers written as Hebrew words). Nomi had similar errors of conversion to the decimal structure in number comprehension (number-size comparison tasks), suggesting that her deficit is in a component shared by reading and comprehension. We also compared Nomi's number reading to her reading and signing of 406 Hebrew words. Nomi's word reading was in the high range of the normal performance of hearing controls and of deaf signers and significantly better than her multidigit number reading, demonstrating a dissociation between number reading, which was impaired, and word reading, which was spared. These results point to a specific type of dysnumeria in the number-frame generation for written multidigit numbers, whereby the conversion from written multidigit numbers to the abstract decimal structure is impaired, affecting both reading and comprehension. The results support abstract, non-verbal decimal structure generation that is shared by reading and comprehension, and also suggest the existence of a non-decimal number-reading route.

1988 ◽  
Vol 53 (3) ◽  
pp. 316-327 ◽  
Author(s):  
Alan G. Kamhi ◽  
Hugh W. Catts ◽  
Daria Mauer ◽  
Kenn Apel ◽  
Betholyn F. Gentry

In the present study, we further examined (see Kamhi & Catts, 1986) the phonological processing abilities of language-impaired (LI) and reading-impaired (RI) children. We also evaluated these children's ability to process spatial information. Subjects were 10 LI, 10 RI, and 10 normal children between the ages of 6:8 and 8:10 years. Each subject was administered eight tasks: four word repetition tasks (monosyllabic, monosyllabic presented in noise, three-item, and multisyllabic), rapid naming, syllable segmentation, paper folding, and form completion. The normal children performed significantly better than both the LI and RI children on all but two tasks: syllable segmentation and repeating words presented in noise. The LI and RI children performed comparably on every task with the exception of the multisyllabic word repetition task. These findings were consistent with those from our previous study (Kamhi & Catts, 1986). The similarities and differences between LI and RI children are discussed.


2020 ◽  
Vol 14 ◽  
Author(s):  
Vasu Mehra ◽  
Dhiraj Pandey ◽  
Aayush Rastogi ◽  
Aditya Singh ◽  
Harsh Preet Singh

Background:: People suffering from hearing and speaking disabilities have a few ways of communicating with other people. One of these is to communicate through the use of sign language. Objective:: Developing a system for sign language recognition becomes essential for deaf as well as a mute person. The recognition system acts as a translator between a disabled and an able person. This eliminates the hindrances in exchange of ideas. Most of the existing systems are very poorly designed with limited support for the needs of their day to day facilities. Methods:: The proposed system embedded with gesture recognition capability has been introduced here which extracts signs from a video sequence and displays them on screen. On the other hand, a speech to text as well as text to speech system is also introduced to further facilitate the grieved people. To get the best out of human computer relationship, the proposed solution consists of various cutting-edge technologies and Machine Learning based sign recognition models which have been trained by using Tensor Flow and Keras library. Result:: The proposed architecture works better than several gesture recognition techniques like background elimination and conversion to HSV because of sharply defined image provided to the model for classification. The results of testing indicate reliable recognition systems with high accuracy that includes most of the essential and necessary features for any deaf and dumb person in his/her day to day tasks. Conclusion:: It’s the need of current technological advances to develop reliable solutions which can be deployed to assist deaf and dumb people to adjust to normal life. Instead of focusing on a standalone technology, a plethora of them have been introduced in this proposed work. Proposed Sign Recognition System is based on feature extraction and classification. The trained model helps in identification of different gestures.


2020 ◽  
Vol 500 (3) ◽  
pp. 3213-3239
Author(s):  
Mattia Libralato ◽  
Daniel J Lennon ◽  
Andrea Bellini ◽  
Roeland van der Marel ◽  
Simon J Clark ◽  
...  

ABSTRACT The presence of massive stars (MSs) in the region close to the Galactic Centre (GC) poses several questions about their origin. The harsh environment of the GC favours specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogues have errors better than 0.5 mas yr−1. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches, and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3–4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions, suggesting that they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogues publicly available.


Author(s):  
Robert Mertens ◽  
Po-Sen Huang ◽  
Luke Gottlieb ◽  
Gerald Friedland ◽  
Ajay Divakaran ◽  
...  

A video’s soundtrack is usually highly correlated to its content. Hence, audio-based techniques have recently emerged as a means for video concept detection complementary to visual analysis. Most state-of-the-art approaches rely on manual definition of predefined sound concepts such as “ngine sounds,” “utdoor/indoor sounds.” These approaches come with three major drawbacks: manual definitions do not scale as they are highly domain-dependent, manual definitions are highly subjective with respect to annotators and a large part of the audio content is omitted since the predefined concepts are usually found only in a fraction of the soundtrack. This paper explores how unsupervised audio segmentation systems like speaker diarization can be adapted to automatically identify low-level sound concepts similar to annotator defined concepts and how these concepts can be used for audio indexing. Speaker diarization systems are designed to answer the question “ho spoke when?”by finding segments in an audio stream that exhibit similar properties in feature space, i.e., sound similar. Using a diarization system, all the content of an audio file is analyzed and similar sounds are clustered. This article provides an in-depth analysis on the statistic properties of similar acoustic segments identified by the diarization system in a predefined document set and the theoretical fitness of this approach to discern one document class from another. It also discusses how diarization can be tuned in order to better reflect the acoustic properties of general sounds as opposed to speech and introduces a proof-of-concept system for multimedia event classification working with diarization-based indexing.


2018 ◽  
Vol 85 (2) ◽  
pp. 229-247 ◽  
Author(s):  
Douglas Fuchs ◽  
Devin M. Kearns ◽  
Lynn S. Fuchs ◽  
Amy M. Elleman ◽  
Jennifer K. Gilbert ◽  
...  

Because of the importance of teaching reading comprehension to struggling young readers and the infrequency with which it has been implemented and evaluated, we designed a comprehensive first-grade reading comprehension program. We conducted a component analysis of the program’s decoding/fluency and reading comprehension dimensions (DF and COMP), creating DF and DF+COMP treatments to parse the value of COMP. Students ( N = 125) were randomly assigned to the two active treatments and controls. Treatment children were tutored three times per week for 21 weeks in 45-min sessions. Children in DF and DF+COMP together performed more strongly than controls on word reading and comprehension. However, pretreatment word reading appeared to moderate these results such that children with weaker beginning word reading across the treatments outperformed similarly low-performing controls to a significantly greater extent than treatment children with stronger beginning word reading outperformed comparable controls. DF+COMP children did not perform better than DF children. Study limitations and implications for research and practice are discussed.


2018 ◽  
Vol 13 (3) ◽  
pp. 333-353
Author(s):  
Stéphan Tulkens ◽  
Dominiek Sandra ◽  
Walter Daelemans

Abstract An oft-cited shortcoming of Interactive Activation as a psychological model of word reading is that it lacks the ability to simultaneously represent words of different lengths. We present an implementation of the Interactive Activation model, which we call Metameric, that can simulate words of different lengths, and show that there is nothing inherent to Interactive Activation which prevents it from simultaneously representing multiple word lengths. We provide an in-depth analysis of which specific factors need to be present, and show that the inclusion of three specific adjustments, all of which have been published in various models before, lead to an Interactive Activation model which is fully capable of representing words of different lengths. Finally, we show that our implementation is fully capable of representing all words between 2 and 11 letters in length from the English Lexicon Project (31, 416 words) in a single model. Our implementation is completely open source, heavily optimized, and includes both command line and graphical user interfaces, but is also agnostic to specific input data or problems. It can therefore be used to simulate a myriad of other models, e.g., models of spoken word recognition. The implementation can be accessed at www.github.com/clips/metameric.


1992 ◽  
Vol 35 (5) ◽  
pp. 1040-1048 ◽  
Author(s):  
Mabel L. Rice ◽  
JoAnn Buhr ◽  
Janna B. Oetting

It was hypothesized that the initial word comprehension of specific-language-impaired children would be enhanced by the insertion of a short pause just before a sentence-final novel word. Three groups of children served as subjects: twenty 5-year-old, specific-languageimpaired (SLI) children, and two comparison groups of normally developing children, 20 matched for mean length of utterance (MLU) and 32 matched for chronological age (CA). The children were randomly assigned to two conditions for viewing video programs. The programs were animated stories that featured five novel object words and five novel attribute words, presented in a voice-over narration. The experimental version introduced a pause before the targeted words; the control version was identical except for normal prosody instead of a pause. Counter to the predictions, there was no effect for condition. Insertion of a pause did not improve the SLI children’s initial comprehension of novel words. There were group main effects, with the CA matches better than either of the other two groups and no differences between the SLI children and the MLU-matched children.


2020 ◽  
Vol 34 (03) ◽  
pp. 3088-3095
Author(s):  
Shufang Zhu ◽  
Giuseppe De Giacomo ◽  
Geguang Pu ◽  
Moshe Y. Vardi

In synthesis, assumptions are constraints on the environment that rule out certain environment behaviors. A key observation here is that even if we consider systems with LTLƒ goals on finite traces, environment assumptions need to be expressed over infinite traces, since accomplishing the agent goals may require an unbounded number of environment action. To solve synthesis with respect to finite-trace LTLƒ goals under infinite-trace assumptions, we could reduce the problem to LTL synthesis. Unfortunately, while synthesis in LTLƒ and in LTL have the same worst-case complexity (both 2EXPTIME-complete), the algorithms available for LTL synthesis are much more difficult in practice than those for LTLƒ synthesis. In this work we show that in interesting cases we can avoid such a detour to LTL synthesis and keep the simplicity of LTLƒ synthesis. Specifically, we develop a BDD-based fixpoint-based technique for handling basic forms of fairness and of stability assumptions. We show, empirically, that this technique performs much better than standard LTL synthesis.


Sign in / Sign up

Export Citation Format

Share Document