scholarly journals Is Pupil Activity Associated With the Strength of Memory Signal for Words in a Continuous Recognition Memory Paradigm?

2021 ◽  
Vol 12 ◽  
Author(s):  
Jorge Oliveira ◽  
Marta Fernandes ◽  
Pedro J. Rosa ◽  
Pedro Gamito

Research on pupillometry provides an increasing evidence for associations between pupil activity and memory processing. The most consistent finding is related to an increase in pupil size for old items compared with novel items, suggesting that pupil activity is associated with the strength of memory signal. However, the time course of these changes is not completely known, specifically, when items are presented in a running recognition task maximizing interference by requiring the recognition of the most recent items from a sequence of old/new items. The sample comprised 42 healthy participants who performed a visual word recognition task under varying conditions of retention interval. Recognition responses were evaluated using behavioral variables for discrimination accuracy, reaction time, and confidence in recognition decisions. Pupil activity was recorded continuously during the entire experiment. The results suggest a decrease in recognition performance with increasing study-test retention interval. Pupil size decreased across retention intervals, while pupil old/new effects were found only for words recognized at the shortest retention interval. Pupillary responses consisted of a pronounced early pupil constriction at retrieval under longer study-test lags corresponding to weaker memory signals. However, the pupil size was also sensitive to the subjective feeling of familiarity as shown by pupil dilation to false alarms (new items judged as old). These results suggest that the pupil size is related not only to the strength of memory signal but also to subjective familiarity decisions in a continuous recognition memory paradigm.

2020 ◽  
Author(s):  
Volkan Nurdal ◽  
Graeme Fairchild ◽  
George Stothart

Introduction: The development of rapid and reliable neural measures of memory is an important goal of cognitive neuroscience research and clinical practice. Fast Periodic Visual Stimulation (FPVS) is a recently developed electroencephalography (EEG) method that involves presenting a mix of novel and previously-learnt stimuli at a fast rate. Recent work has shown that implicit recognition memory can be measured using FPVS, however the role of repetition priming remains unclear. Here, we attempted to separate out the effects of recognition memory and repetition priming by manipulating the degree of repetition of the stimuli to be remembered.Method: Twenty-two participants with a mean age of 20.8 (±4.3) yrs completed an FPVS-oddball paradigm with a varying number of repetitions of the oddball stimuli, ranging from repetition only (pure repetition) to no repetition (pure recognition). In addition to the EEG task, participants completed a behavioural recognition task and visual memory subtests from the Wechsler Memory Scale – 4th edition (WMS-IV). Results: An oddball memory response was observed in all four experimental conditions (pure repetition to pure recognition) compared to the control condition (no oddball stimuli). The oddball memory response was largest in the pure repetition condition and smaller, but still significant, in conditions with less/no oddball repetition (e.g. pure recognition). Behavioural recognition performance was at ceiling, suggesting that all images were encoded successfully. There was no correlation with either behavioural memory performance or WMS-IV scores, suggesting the FPVS-oddball paradigm captures different memory processes than behavioural measures.Conclusion: Repetition priming significantly modulates the FPVS recognition memory response, however recognition is still detectable even in the total absence of repetition priming. The FPVS-oddball paradigm could potentially be developed into an objective and easy-to-administer memory assessment tool.


2012 ◽  
Vol 24 (1) ◽  
pp. 183-195 ◽  
Author(s):  
Eva M. Bauch ◽  
Leun J. Otten

Memory improves when encoding and retrieval processes overlap. Here, we investigated how the neural bases of long-term memory encoding vary as a function of the degree to which functional processes engaged at study are engaged again at test. In an incidental learning paradigm, electrical brain activity was recorded from the scalps of healthy adults while they made size judgments on intermixed series of pictures and words. After a 1-hr delay, memory for the items was tested with a recognition task incorporating remember/know judgments. In different groups of participants, studied items were either probed in the same mode of presentation (word–word; picture–picture) or in the alternative mode of presentation (word–picture; picture–word). Activity over anterior scalp sites predicted later memory of words, irrespective of type of test probe. Encoding-related activity for pictures, by contrast, differed qualitatively depending on how an item was cued at test. When a picture was probed with a picture, activity over anterior scalp sites predicted encoding success. When a picture was probed with a word, encoding-related activity was instead maximal over posterior sites. Activity differed according to study–test congruency from around 100 msec after picture onset. These findings indicate that electrophysiological correlates of encoding are sensitive to the similarity between processes engaged at study and test. The time course supports a direct and not merely consequential role of encoding–retrieval overlap in encoding. However, because congruency only affected one type of stimulus material, encoding–retrieval overlap may not be a universal organizing principle of neural correlates of memory.


1994 ◽  
Vol 79 (3) ◽  
pp. 1319-1324 ◽  
Author(s):  
Manuel Pelegrina ◽  
Josep Gallifa ◽  
Francesc S. Beltran

Research into the acquisition of knowledge incorporated in schema showed that the recognition of typical and atypical events decreases differently over a retention interval. In addition, the models of a priori probability of response have proven useful when applied to recognition memory in the study of schema. The main aim of this research has been to extend the above findings to a classroom situation. The script “Going to school” was compiled by 8- or 9-yr.-old children and the events of the script were divided into typical and atypical. A recognition task was carried out over five retention periods. The recognition scores were calculated as ratios of hits to false alarms, and the probability effects were corrected using the memory score formula ( MS). Analysis confirmed that typical and atypical events are processed in a different manner over different retention periods and permitted suggesting some applications in both learning and instructional processes, especially in initial teaching of subject matter and in planning of activities.


1977 ◽  
Vol 45 (2) ◽  
pp. 457-458
Author(s):  
Richard Krinsky ◽  
Rick M. Gardner

Responses from 6 subjects show that pupillary changes observed during short-term information processing with retention intervals of 0, 5, and 10 sec. delay occur during recognition memory for tones as well as recall of 7-digit numbers.


2020 ◽  
Vol 228 (4) ◽  
pp. 264-277 ◽  
Author(s):  
Evan E. Mitton ◽  
Chris M. Fiacconi

Abstract. To date there has been relatively little research within the domain of metamemory that examines how individuals monitor their performance during memory tests, and whether the outcome of such monitoring informs subsequent memory predictions for novel items. In the current study, we sought to determine whether spontaneous monitoring of test performance can in fact help individuals better appreciate their memory abilities, and in turn shape future judgments of learning (JOLs). Specifically, in two experiments we examined recognition memory for visual images across three study-test cycles, each of which contained novel images. We found that across cycles, participants’ JOLs did in fact increase, reflecting metacognitive sensitivity to near-perfect levels of recognition memory performance. This finding suggests that individuals can and do monitor their test performance in the absence of explicit feedback, and further underscores the important role that test experience can play in shaping metacognitive evaluations of learning and remembering.


2001 ◽  
Author(s):  
Evan Heit ◽  
Noellie Brockdorff ◽  
Koen Lamberts

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabell Hubert Lyall ◽  
Juhani Järvikivi

AbstractResearch suggests that listeners’ comprehension of spoken language is concurrently affected by linguistic and non-linguistic factors, including individual difference factors. However, there is no systematic research on whether general personality traits affect language processing. We correlated 88 native English-speaking participants’ Big-5 traits with their pupillary responses to spoken sentences that included grammatical errors, "He frequently have burgers for dinner"; semantic anomalies, "Dogs sometimes chase teas"; and statements incongruent with gender stereotyped expectations, such as "I sometimes buy my bras at Hudson's Bay", spoken by a male speaker. Generalized additive mixed models showed that the listener's Openness, Extraversion, Agreeableness, and Neuroticism traits modulated resource allocation to the three different types of unexpected stimuli. No personality trait affected changes in pupil size across the board: less open participants showed greater pupil dilation when processing sentences with grammatical errors; and more introverted listeners showed greater pupil dilation in response to both semantic anomalies and socio-cultural clashes. Our study is the first one demonstrating that personality traits systematically modulate listeners’ online language processing. Our results suggest that individuals with different personality profiles exhibit different patterns of the allocation of cognitive resources during real-time language comprehension.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ricky Chow ◽  
Alix Noly-Gandon ◽  
Aline Moussard ◽  
Jennifer D. Ryan ◽  
Claude Alain

AbstractListening to autobiographically-salient music (i.e., music evoking personal memories from the past), and transcranial direct current stimulation (tDCS) have each been suggested to temporarily improve older adults’ subsequent performance on memory tasks. Limited research has investigated the effects of combining both tDCS and music listening together on cognition. The present study examined whether anodal tDCS stimulation over the left dorsolateral prefrontal cortex (2 mA, 20 min) with concurrent listening to autobiographically-salient music amplified subsequent changes in working memory and recognition memory in older adults than either tDCS or music listening alone. In a randomized sham-controlled crossover study, 14 healthy older adults (64–81 years) participated in three neurostimulation conditions: tDCS with music listening (tDCS + Music), tDCS in silence (tDCS-only), or sham-tDCS with music listening (Sham + Music), each separated by at least a week. Working memory was assessed pre- and post-stimulation using a digit span task, and recognition memory was assessed post-stimulation using an auditory word recognition task (WRT) during which electroencephalography (EEG) was recorded. Performance on the backwards digit span showed improvement in tDCS + Music, but not in tDCS-only or Sham + Music conditions. Although no differences in behavioural performance were observed in the auditory WRT, changes in neural correlates underlying recognition memory were observed following tDCS + Music compared to Sham + Music. Findings suggest listening to autobiographically-salient music may amplify the effects of tDCS for working memory, and highlight the potential utility of neurostimulation combined with personalized music to improve cognitive performance in the aging population.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1007
Author(s):  
Chi Xu ◽  
Yunkai Jiang ◽  
Jun Zhou ◽  
Yi Liu

Hand gesture recognition and hand pose estimation are two closely correlated tasks. In this paper, we propose a deep-learning based approach which jointly learns an intermediate level shared feature for these two tasks, so that the hand gesture recognition task can be benefited from the hand pose estimation task. In the training process, a semi-supervised training scheme is designed to solve the problem of lacking proper annotation. Our approach detects the foreground hand, recognizes the hand gesture, and estimates the corresponding 3D hand pose simultaneously. To evaluate the hand gesture recognition performance of the state-of-the-arts, we propose a challenging hand gesture recognition dataset collected in unconstrained environments. Experimental results show that, the gesture recognition accuracy of ours is significantly boosted by leveraging the knowledge learned from the hand pose estimation task.


Sign in / Sign up

Export Citation Format

Share Document