scholarly journals Computer-Based Assessment: Dual-Task Outperforms Large-Screen Cancellation Task in Detecting Contralesional Omissions

2022 ◽  
Vol 12 ◽  
Author(s):  
Sanna Villarreal ◽  
Matti Linnavuo ◽  
Raimo Sepponen ◽  
Outi Vuori ◽  
Mario Bonato ◽  
...  

Objective: Traditionally, asymmetric spatial processing (i.e., hemispatial neglect) has been assessed with paper-and-pencil tasks, but growing evidence indicates that computer-based methods are a more sensitive assessment modality. It is not known, however, whether simply converting well-established paper-and-pencil methods into a digital format is the best option. The aim of the present study was to compare sensitivity in detecting contralesional omissions of two different computer-based methods: a “digitally converted” cancellation task was compared with a computer-based Visual and Auditory dual-tasking approach, which has already proved to be very sensitive.Methods: Participants included 40 patients with chronic unilateral stroke in either the right hemisphere (RH patients, N = 20) or the left hemisphere (LH patients, N = 20) and 20 age-matched healthy controls. The cancellation task was implemented on a very large format (173 cm × 277 cm) or in a smaller (A4) paper-and-pencil version. The computer-based dual-tasks were implemented on a 15′′ monitor and required the detection of unilateral and bilateral briefly presented lateralized targets.Results: Neither version of the cancellation task was able to show spatial bias in RH patients. In contrast, in the Visual dual-task RH patients missed significantly more left-sided targets than controls in both unilateral and bilateral trials. They also missed significantly more left-sided than right-sided targets only in the bilateral trials of the Auditory dual-task.Conclusion: The dual-task setting outperforms the cancellation task approach even when the latter is implemented on a (large) screen. Attentionally demanding methods are useful for revealing mild forms of contralesional visuospatial deficits.

Author(s):  
Sanna Villarreal ◽  
Matti Linnavuo ◽  
Raimo Sepponen ◽  
Outi Vuori ◽  
Mario Bonato ◽  
...  

Abstract Objective: Patients with unilateral stroke commonly show hemispatial neglect or milder contralesional visuoattentive deficits, but spatially non-lateralized visuoattentive deficits have also been reported. The aim of the present study was to compare spatially lateralized (i.e., contralesional) and non-lateralized (i.e., general) visuoattentive deficits in left and right hemisphere stroke patients. Method: Participants included 40 patients with chronic unilateral stroke in either the left hemisphere (LH group, n = 20) or the right hemisphere (RH group, n = 20) and 20 healthy controls. To assess the contralesional deficits, we used a traditional paper-and-pencil cancellation task (the Bells Test) and a Lateralized Targets Computer Task. To assess the non-lateralized deficits, we developed a novel large-screen (173 × 277 cm) computer method, the Ball Rain task, with moving visual stimuli and fast-paced requirements for selective attention. Results: There were no contralesional visuoattentive deficits according to the cancellation task. However, in the Lateralized Targets Computer Task, RH patients missed significantly more left-sided than right-sided targets in bilateral trials. This omission distribution differed significantly from those of the controls and LH patients. In the assessment of non-lateralized attention, RH and LH patients missed significantly more Ball Rain targets than controls in both the left and right hemifields. Conclusions: Computer-based assessment sensitively reveals various aspects of visuoattentive deficits in unilateral stroke. Patients with either right or left hemisphere stroke demonstrate non-lateralized visual inattention. In right hemisphere stroke, these symptoms can be accompanied by subtle contralesional visuoattentive deficits that have remained unnoticed in cancellation task.


1980 ◽  
Vol 1 (3) ◽  
pp. 279-294 ◽  
Author(s):  
Daniel B. Hier ◽  
Joni Kaplan

ABSTRACTWe have compared the verbal comprehension abilities of 34 right hemisphere damaged patients to 16 hospitalized control subjects of comparable age and educational attainment. The right hemisphere damaged patients performed as well as the control subjects on a vocabulary test, but were impaired in their ability to interpret proverbs and comprehend logico-grammatical sentences. Impairment on the proverbs test was the result of a decrease in the number of abstract interpretations, whereas impairment on the logico-grammatical sentence comprehension test was related to difficultes in grasping spatial and passive relationships. These comprehension impairments tended to correlate with visuospatial deficits and hemianopia, but not with the degree of hemiparesis or the presence of sensory extinction. Patients with anterior right hemisphere damage performed better on the logico-grammatical sentence conprehension test than patients with posterior damage. A variety of factors probably contribute to these verbal deficits including impaired intellect, inattention, an inability to grasp spatial relationships, and difficulties in manipulating the inner schemata of language.


2002 ◽  
Vol 94 (3) ◽  
pp. 1029-1040 ◽  
Author(s):  
Stephanie K. Daniels ◽  
David M. Corey ◽  
Cristen L. Barnes ◽  
Nikki M. Faucheaux ◽  
Daniel H. Priestly ◽  
...  

It is unclear whether the cortical representation of swallowing is lateralized to the left cerebral hemisphere, right hemisphere, or bilaterally represented. As dysphagia is common in acute stroke, it is important to elucidate swallowing lateralization to facilitate earlier detection of stroke patients who may be at greater risk for dysphagia and aspiration. In this study, a modified dual task paradigm was designed to study laterality of swallowing in a group of 14 healthy, young, right-handed, male adults. The subjects were studied at baseline and with interference. Baseline conditions, performed separately, were continuous swallowing, finger tapping using the right and left index fingers, and word repetition. Interference tasks, including tapping with the right index finger, tapping with the left index finger, and word repetition, were completed with and without swallowing. Finger-tapping rate was measured, and x-ray samples of the swallowing task were taped to measure swallowing rate and volume swallowed. At baseline, the rate of tapping the right index finger was significantly faster than that of the left index finger. There was a significant decline in the tapping rates of both left and right index fingers with swallowing interference. The volume per swallow was significantly reduced during the interfering language task of silent repetition. These results offer partial support for a bilateral representation of swallowing as well as suggest an important left hemispheric contribution to swallowing. However, it cannot be concluded that the left hemisphere is more important than the right, as a comparable right hemisphere task was not studied.


2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Radish Kumar Balasubramanium ◽  
Thejaswi Dodderi ◽  
Jayashree S. Bhat

Objectives. It is well established that the brainstem regulates the act of swallow. However, the role of cortex and its influence on swallowing are still a question. Hence, the present study aimed to investigate if cerebral hemispheric laterality controls swallow activity. Methods. Thirty normal right handed participants were subjected to time test of swallow using 100 ml of water. Dual paradigm was used to investigate hemispheric laterality for swallowing which involved listening to the speech or music stimuli presented binaurally while swallowing. The clinician measured total time taken and hyolaryngeal movement simultaneously which was used to calculate volume/time, volume/swallow, and time/swallow on an offline basis. Results. Results revealed that swallow performance decreased with the dual task paradigm compared to baseline swallow. These results are suggestive of cortex playing a role during swallowing in the dual task paradigm. Moreover, quantitative parameters like volume/swallow and volume/time were affected more when speech was competing with swallowing. However, music exerted greater interference over the speech for time/swallow. Conclusions. These results suggests that there exists differential cue lateralization hypothesis which means volume related parameters are controlled by left hemisphere and time related swallowing parameters are controlled at the right hemisphere.


2021 ◽  
Vol 13 ◽  
Author(s):  
Veerle de Rond ◽  
Diego Orcioli-Silva ◽  
Bauke Wybren Dijkstra ◽  
Jean-Jacques Orban de Xivry ◽  
Annette Pantall ◽  
...  

Background: Postural control and cognition are affected by aging. We investigated whether cognitive distraction influenced neural activity differently in young and older adults during a game-like mediolateral weight-shifting task with a personalized task load.Methods: Seventeen healthy young and 17 older adults performed a balance game, involving hitting virtual wasps, serial subtractions and a combination of both (dual-task). A motion analysis system estimated each subject's center of mass position. Cortical activity in five regions was assessed by measuring oxygenated hemoglobin (HbO2) with a functional Near-Infrared Spectroscopy system.Results: When adding cognitive load to the game, weight-shifting speed decreased irrespective of age, but older adults reduced the wasp-hits more than young adults. Accompanying these changes, older adults decreased HbO2 in the left pre-frontal cortex (PFC) and frontal eye fields (FEF) compared to single-tasking, a finding not seen in young adults. Additionally, lower HbO2 levels were found during dual-tasking compared to the summed activation of the two single tasks in all regions except for the right PFC. These relative reductions were specific for the older age group in the left premotor cortex (PMC), the right supplementary motor area (SMA), and the left FEF.Conclusion: Older adults showed more compromised neural activity than young adults when adding a distraction to a challenging balance game. We interpret these changes as competitive downgrading of neural activity underpinning the age-related deterioration of game performance during dual-tasking. Future work needs to ascertain if older adults can train their neural flexibility to withstand balance challenges during daily life activities.


1990 ◽  
Vol 157 (4) ◽  
pp. 608-610 ◽  
Author(s):  
Paul Crichton ◽  
Shôn Lewis

A patient with AIDS developed the Capgras' syndrome as part of an acute confusional state resulting from an opportunistic infection. Neuropsychological testing suggested non-dominant hemisphere dysfunction with impaired facial recognition. Serial CT scanning showed a right parietal lesion which resolved after the psychosis improved. These findings provide further evidence for the hypothesis that selective visuospatial deficits underlie the development of Capgras' syndrome.


2020 ◽  
Author(s):  
Larissa Bastos Tavares ◽  
Idaliana Fagundes de Souza ◽  
Bartolomeu Fagundes de Lima Filho ◽  
Kim Mansur Yano ◽  
Juliana Maria Gazzola ◽  
...  

Abstract Dual-task activities are common in daily life and have greater motor/cognitive demands. These are conditions that increase the risk of older adult falls. Falls are a public health problem. Brain mapping during dual-task activities can inform which therapeutic activities stimulate specific brain areas, improving functionality, and decreasing dependence and the risk of falls. The objective of the study was to characterize the brain activity of healthy older adults while performing a dual-task activity called the Functional Gait Test (FGT). Method : This observational study included 30 older adults aged 65 to 75 years, and it was approved by the institutional review board. The FGT consists of walking following a sequence of numbers (simple task), and a sequence of alternating letters and numbers (complex task). During the activity, the subjects had their cortical activation pattern measured using the Emotiv EPOC® electroencephalogram. Complete data was obtained for analysis on 13 participants. The data was analyzed using descriptive statistics (mean and standard deviation), and paired T-tests to compare the brain activity during the conditions (simple vs. complex task). Results : Alpha brain waves were activated in the right and left hemispheres during the simple task, while Alpha brain waves’ activation during the complex task was predominant in the right hemisphere. However, the differences were not statistically significant. The Betha waves had predominant activation in the left hemisphere during the simple task, and predominant activation in the right hemisphere during the complex task. The difference was statistically significant in 11 out of the 14 channels evaluated ( P <0.04). Conclusion: The results corroborates the increased complexity of dual-tasks due to the predominant activation of the right hemisphere, which is related to motor learning process and new stimulus processing.


2020 ◽  
Vol 26 (10) ◽  
pp. 993-1005
Author(s):  
Sanna Villarreal ◽  
Matti Linnavuo ◽  
Raimo Sepponen ◽  
Outi Vuori ◽  
Hanna Jokinen ◽  
...  

AbstractObjective:Both clinically observable and subclinical hemispatial neglect are related to functional disability. The aim of the present study was to examine whether increasing task complexity improves sensitivity in assessment and whether it enables the identification of subclinical neglect.Method:We developed and compared two computerized dual-tasks, a simpler and a more complex one, and presented them on a large, 173 × 277 cm screen. Participants in the study included 40 patients with unilateral stroke in either the left hemisphere (LH patient group, n = 20) or the right hemisphere (RH patient group, n = 20) and 20 healthy controls. In addition to the large-screen tasks, all participants underwent a comprehensive neuropsychological assessment. The Bells Test was used as a traditional paper-and-pencil cancellation test to assess neglect.Results:RH patients made significantly more left hemifield omission errors than controls in both large-screen tasks. LH patients’ omissions did not differ significantly from those of the controls in either large-screen task. No significant group differences were observed in the Bells Test. All groups’ reaction times were significantly slower in the more complex large-screen task compared to the simpler one. The more complex large-screen task also produced significantly slower reactions to stimuli in the left than in the right hemifield in all groups.Conclusions:The present results suggest that dual-tasks presented on a large screen sensitively reveal subclinical neglect in stroke. New, sensitive, and ecologically valid methods are needed to evaluate subclinical neglect.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Gregor Volberg

Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.


Sign in / Sign up

Export Citation Format

Share Document