scholarly journals Reconfigurable Intelligent Surfaces for Doppler Effect and Multipath Fading Mitigation

Author(s):  
Ertugrul Basar

Owing to the envisioned new use-cases, such as immersive virtual reality and high-fidelity mobile hologram, and their potential challenging new requirements for future wireless networks, extensive research has already started on 6G and beyond wireless technologies. Despite the fact that several modern physical layer solutions have been introduced in the past decade, a level of saturation has been reached in terms of the available spectrum and adapted modulation/coding solutions, which accordingly limits the maximum capacity and reliability. Within this respective, reconfigurable intelligent surface (RIS)-empowered communication appears as a potential candidate to overcome the inherent drawbacks of legacy wireless systems. The core idea of RIS-assisted communication is the transformation of the random and uncontrollable wireless propagation environment into a reconfigurable communication system entity that plays an active role in conveying information and improving system performance. In this paper, the well-known multipath fading phenomenon is revisited in mobile wireless communication systems, and novel and unique solutions are introduced from the perspective of RISs. The feasibility of eliminating or mitigating the multipath fading effect stemming from the movement of mobile receivers is also investigated by utilizing RISs. It is shown that rapid fluctuations in the received signal strength due to the Doppler effect can be effectively reduced by using real-time tunable RISs. It is also proven that for a hypothetical propagation environment where all reflectors are coated with RISs, the multipath fading effect can be totally eliminated. Furthermore, we show that for more general propagation environments with several interacting objects, even a few real-time tunable RISs can remarkably reduce the Doppler spread and the deep fades in the received signal.

Author(s):  
Walder Andre ◽  
Olivier Couillard

One of the prerequisites of Electronic Warfare (EW) is to have the means to provide secure point-to-point wireless data and voice communications with other ground stations. New technologies are giving rise to bigger information security threats. This situation illustrates the best the urgency of reducing the development and upgrade time of EW systems. Previous works suggest that digital systems are the best candidates for this purpose and therefore form the backbone of modern Electronic Warfare. Indeed, Digital Modulation (DM) techniques are widely used in modern wireless communication systems. This is largely due to their high resistance to noise and their high transmission capacity that can be achieved through data multiplexing. In this article, a new reconfigurable architecture of a Phase Shift Keying (PSK) modulation is described. The latter can be configured in real time to produce the following modulation schemes: QPSK, 8-PSK, and 16-PSK without having to regenerate the FPGA configuration bits. This action can be done by software via programming or manually using a DIP switch. The proposed design is implemented on the Xilinx xc7k325tfbg900 FPGA using the Genesis 2 development board. The Vivado Physical Design Automation tool indicates a power consumption of 303 mW by the on-chip circuit. The experimental results are in agreement with the simulations.


Author(s):  
Deddy Chandra ◽  
Richard J Harris

The traditional assumptions made by TCP about the operation of wired networks are often found to be invalid for wireless networks. Standard TCP semantics such as end-to-end flow control, congestion control mechanisms and error recovery provide reliability in wired networks. However, wireless communication systems have different characteristics when compared to wired networks that include higher bit error rates, higher latency, limited bandwidth, multipath fading of the signals and handoff. In this paper, we propose an enhancement to TCP that we shall call ETCP, which improves upon conventional TCP when it is applied to the wireless environment. Our simulation results show significant improvements to TCP performance with respect to packet loss detection.


Sign in / Sign up

Export Citation Format

Share Document