scholarly journals Retrievals of Aerosol Optical Depth and Spectral Absorption From DSCOVR EPIC

2021 ◽  
Vol 2 ◽  
Author(s):  
Alexei Lyapustin ◽  
Sujung Go ◽  
Sergey Korkin ◽  
Yujie Wang ◽  
Omar Torres ◽  
...  

A new algorithm is described for joint retrievals of the aerosol optical depth and spectral absorption from EPIC observations in the UV—Vis spectral range. The retrievals are illustrated on examples of the wildfire smoke events over North America, and dust storms over greater Sahara region in 2018. An initial evaluation of single scattering albedo (SSA) at 443 nm over these regions shows a good agreement with AERONET data, generally within the uncertainty of AERONET SSA of ± 0.03. A particularly good agreement is achieved for dust with R~0.62, rmse~0.02, negligible bias, and 85% points within the expected error. This new capability is part of version 2 MAIAC EPIC algorithm. The v2 algorithm has recently completed reprocessing of the EPIC record covering the period of 2015–2020.

2021 ◽  
Author(s):  
Omar Torres ◽  
Hiren Jethva ◽  
Changwoo Ahn ◽  
Glen Jaross ◽  
Diego Loyola

<p>The NASA-TROPOMI aerosol algorithm (TropOMAER), is an adaptation of the currently operational OMI near-UV (OMAERUV & OMACA) inversion schemes, that take advantage of TROPOMI’s unprecedented fine spatial resolution at UV wavelengths, and the availability of ancillary aerosol-related information to derive aerosol loading in cloud-free and above-cloud aerosols scenes. In this presentation we will introduce the NASA TROPOMI aerosol algorithm and discuss initial evaluation results of retrieved aerosol optical depth (AOD) and single scattering albedo (SSA) by direct comparison to AERONET AOD direct measurements and SSA inversions. We will also demonstrate TropOMAER retrieval capabilities in the context of recent continental scale aerosol events.</p>


2016 ◽  
Vol 9 (2) ◽  
pp. 455-467 ◽  
Author(s):  
D. Toledo ◽  
P. Rannou ◽  
J.-P. Pommereau ◽  
A. Sarkissian ◽  
T. Foujols

Abstract. A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.


2012 ◽  
Vol 5 (3) ◽  
pp. 569-579 ◽  
Author(s):  
V. Estellés ◽  
M. Campanelli ◽  
M. P. Utrillas ◽  
F. Expósito ◽  
J. A. Martínez-Lozano

Abstract. SKYNET is an international research network of ground based sky – sunphotometers for the observation and monitoring of columnar aerosol properties. The algorithm developed by SKYNET is called SKYRAD.pack, and it is used on Prede instruments only. In this study, we have modified the SKYRAD.pack software in order to adapt it to Cimel sunphotometers. A one month database of Cimel data obtained at Burjassot (Valencia, Spain) has been processed with this program and the obtained inversion products have been compared with AERONET retrievals. In general, the differences found were consistent with the individual error assessments for both algorithms. Although the aerosol optical depth compared well for any aerosol burden situation (rmsd of 0.002–0.013 for all wavelengths), inversion products such as the single scattering albedo, refractive index and asymmetry parameter compared better for higher turbidity situations. The comparison performed for cases with an aerosol optical depth at 440 nm over 0.2 showed rms differences of 0.025–0.049 for single scattering albedo, 0.005–0.034 for the real part of refractive index, 0.004–0.007 for the imaginary part of the refractive index and 0.006–0.009 for the asymmetry parameter. With respect to the volume distributions, the comparison also showed a good agreement for high turbidity cases (mainly within the 0.01–7 μm interval) although the already known discrepancy in the extremes of the distribution was still found in 40% of the cases, in spite of eliminating data and instrumental differences present in previous studies.


2011 ◽  
Vol 4 (6) ◽  
pp. 6883-6913 ◽  
Author(s):  
V. Estellés ◽  
M. Campanelli ◽  
M. P. Utrillas ◽  
F. Expósito ◽  
J. A. Martínez-Lozano

Abstract. SKYNET is an international research network of ground based sky-sunphotometers for the observation and monitoring of columnar aerosol properties. The algorithm developed by SKYNET is called SKYRAD.pack, and so far it has been used on Prede instruments only. In this study we have modified the SKYRAD.pack software in order to adapt it to Cimel sunphotometers. A one month database of Cimel data obtained at Burjassot (Valencia, Spain) has been processed with this program and the obtained inversion products have been compared with AERONET retrievals. In general, the differences found were consistent with the individual error assessments for both algorithms. Although the aerosol optical depth compared well for any aerosol burden situation (rmsd of 0.002–0.013 for all wavelengths), inversion products such as the single scattering albedo, refractive index and asymmetry parameter compared better for higher turbidity situations. The comparison performed for cases with an aerosol optical depth at 440 nm over 0.2 showed rms differences of 0.025–0.049 for single scattering albedo, 0.005–0.034 for the real part of refractive index, 0.004–0.007 for the imaginary part of the refractive index, and 0.006–0.009 for the asymmetry parameter. In respect to the volume distributions, the comparison also showed a good agreement for high turbidity cases (mainly within the 0.01–7 μm interval) although the already known discrepancy in the extremes of the distribution was still found in 40% of cases, in spite of eliminating data and instrumental differences present in previous studies.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-14
Author(s):  
Monim Jiboori ◽  
Nadia Abed ◽  
Mohamed Abdel Wahab

2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


2012 ◽  
Vol 5 (2) ◽  
pp. 2169-2220 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
M.-J. Jeong ◽  
B. N. Holben ◽  
...  

Abstract. This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-yr (1997–2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where SeaWiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record is suitable for quantitative scientific use.


2015 ◽  
Vol 8 (6) ◽  
pp. 2625-2638 ◽  
Author(s):  
L. Wu ◽  
O. Hasekamp ◽  
B. van Diedenhoven ◽  
B. Cairns

Abstract. We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.


2012 ◽  
Vol 12 (12) ◽  
pp. 33265-33289
Author(s):  
A. V. Lindfors ◽  
N. Kouremeti ◽  
A. Arola ◽  
S. Kazadzis ◽  
A. F. Bais ◽  
...  

Abstract. Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.


Sign in / Sign up

Export Citation Format

Share Document