scholarly journals Miniaturised Instrumentation for the Detection of Biosignatures in Ocean Worlds of the Solar System

2021 ◽  
Vol 2 ◽  
Author(s):  
Julian Chela-Flores

This review of miniaturised instrumentation is motivated by the ongoing and forthcoming exploration of the confirmed, or candidate ocean worlds of the Solar System. It begins with a section on the evolution of instrumentation itself, ranging from the early efforts up to the current rich-heritage miniaturised mass spectrometers approved for missions to the Jovian system. The geochemistry of sulphur stable isotopes was introduced for life detection at the beginning of the present century. Miniaturised instruments allow the measurement of geochemical biosignatures with their underlying biogenic coding, which are more robust after death than cellular organic molecules. The role of known stable sulphur isotope fractionation by sulphate-reducing bacteria is discussed. Habitable ocean worlds are discussed, beginning with analogies from the first ocean world known in the Solar System that has always being available for scientific exploration, our own. Instrumentation can allow the search for biosignatures, not only on the icy Galilean moons, but also beyond. Observed sulphur fractionation on Earth suggests a testable “Sulphur Hypothesis”, namely throughout the Solar System chemoautotrophy, past or present, has left, or are leaving biosignatures codified in sulphur fractionations. A preliminary feasible test is provided with a discussion of a previously formulated “Sulphur Dilemma”: It was the Galileo mission that forced it upon us, when the Europan sulphur patches of non-ice surficial elements were discovered. Biogenic fractionations up to and beyond δ34S = −70‰ denote biogenic, rather than inorganic processes, which are measurable with the available high sensitivity miniaturised mass spectrometers. Finally, we comment on the long-term exploration of ocean worlds in the neighbourhood of the gas and ice giants.

2012 ◽  
Vol 56 (9) ◽  
pp. 658-665 ◽  
Author(s):  
Cláudia C. D. Nakabashi ◽  
Rosa Paula M. Biscolla ◽  
Teresa S. Kasamatsu ◽  
Teresinha T. Tachibana ◽  
Rafaela N. Barcelos ◽  
...  

OBJECTIVE: In the last decade, data published stressed the role of highly-sensitive thyroglobulin (Tg) assays in the follow-up of differentiated thyroid carcinoma (DTC) patients. The present study describes a new, highly-sensitive Tg assay, compares it with an available commercial assay, and validates it in the follow-up of DTC patients. SUBJECTS AND METHODS: The immunofluorometric high-sensitivity Tg assay is based on monoclonal and polyclonal antibodies produced at our laboratories. It was validated in 100 samples of 87 patients with DTC submitted to total thyroidectomy, 87% of whom also received radioiodine. For correlation, all samples were also tested using a commercial Tg assay (Beckman Access) with functional sensitivity (FS) of 0.1 ng/mL. RESULTS: The new method showed FS of 0.3 ng/mL. The correlation between the two methods was good (r = 0.74; p < 0.0001). The diagnostic sensitivity was 88.9%, and it was increased to 100% when combined with neck US. CONCLUSION: This new, high-sensitivity Tg assay presented a good correlation with Beckman Access assay and with the clinical outcome of the patients. The continuous availability of a validated assay is an additional advantage for long term follow-up of DTC patients. Arq Bras Endocrinol Metab. 2012;56(9):658-65


2013 ◽  
Author(s):  
Kim F. Hayes ◽  
Yuqiang Bi ◽  
Julian Carpenter ◽  
Sung Pil Hyng ◽  
Bruce E. Rittmann ◽  
...  

2021 ◽  
Vol 86 (2) ◽  
pp. 156-167
Author(s):  
Alexey P. Bolshakov ◽  
Liya V. Tret’yakova ◽  
Alexey A. Kvichansky ◽  
Natalia V. Gulyaeva

Abstract Glucocorticoids (GCs) are an important component of adaptive response of an organism to stressogenic stimuli, a typical stress response being accompanied by elevation of GC levels in blood. Anti-inflammatory effects of GCs are widely used in clinical practice, while pro-inflammatory effects of GCs are believed to underlie neurodegeneration. This is particularly critical for the hippocampus, brain region controlling both cognitive function and emotions/affective behavior, and selectively vulnerable to neuroinflammation and neurodegeneration. The hippocampus is believed to be the main target of GCs since it has the highest density of GC receptors potentially underlying high sensitivity of hippocampal cells to severe stress. In this review, we analyzed the results of studies on pro- and anti-inflammatory effects of GCs in the hippocampus in different models of stress and stress-related pathologies. The available data form a sophisticated, though often quite phenomenological, picture of a modulatory role of GCs in hippocampal neuroinflammation. Understanding the dual nature of GC-mediated effects as well as causes and mechanisms of switching can provide us with effective approaches and tools to avert hippocampal neuroinflammatory events and as a result to prevent and treat brain diseases, both neurological and psychiatric. In the framework of a mechanistic view, we propose a new hypothesis describing how the anti-inflammatory effects of GCs may transform into the pro-inflammatory ones. According to it, long-term elevation of GC level or preliminary treatment with GC triggers accumulation of FKBP51 protein that suppresses activity of GC receptors and activates pro-inflammatory cascades, which, finally, leads to enhanced neuroinflammation.


2018 ◽  
Vol 14 (S345) ◽  
pp. 347-348
Author(s):  
Mariya Ragulskaya ◽  
Elizaveta Khramova ◽  
Vladimir Obridko

AbstractThe article discusses the physical conditions in the early Solar system and on Earth, determining the origin, selection and development of the first living systems. The role of the young Sun dynamics, cosmic rays, magnetic fields and other protective shells of the Earth in the formation of the biosphere is emphasized. The selection of a single genetic code, ancient methods of long-term storage of energy and adaptive technologies of the first living systems occurred under the influence of cosmological and geophysical factors. A hypothesis was suggested that the accumulation of energy in polyphosphates without the participation of solar radiation could have ensured the survival of the primary biosphere in the conditions of the low luminosity of the young Sun.


1984 ◽  
Vol 30 (106) ◽  
pp. 259-274 ◽  
Author(s):  
M.S. Krass

AbstractSeveral aspects of space glaciology are considered in the paper. Estimates of the water content of the Earth, Mars, and the Galilean moons of Jupiter are corrected. A considerable proportion of the total amount of water in the solar system is localized near Jupiter; part of this water is contained as ice in glaciations, glacial caps, and ice crust on the planets. Ice is one of the main components of the surface of some planets. The major amount of ice on Mars is contained in a permafrost layer of mean thickness about 3 km. The model of an ice crust floating on a water mantle is considered for Jupiter’s moon Europa. It is shown that for definite values of certain parameters this crust may be subject to destruction due to the instability of its proper oscillations, which explains the numerous systems of fractures and cracks observed on Europa’s surface. The stress-strain state of such an ice crust is calculated within the framework of a non-linear thermo-elasticity model. The role of short-period temperature variations at Europa’s surface is estimated and the peculiarities of relief observed on this planet are analysed.


1984 ◽  
Vol 30 (106) ◽  
pp. 259-274
Author(s):  
M.S. Krass

AbstractSeveral aspects of space glaciology are considered in the paper. Estimates of the water content of the Earth, Mars, and the Galilean moons of Jupiter are corrected. A considerable proportion of the total amount of water in the solar system is localized near Jupiter; part of this water is contained as ice in glaciations, glacial caps, and ice crust on the planets. Ice is one of the main components of the surface of some planets. The major amount of ice on Mars is contained in a permafrost layer of mean thickness about 3 km. The model of an ice crust floating on a water mantle is considered for Jupiter’s moon Europa. It is shown that for definite values of certain parameters this crust may be subject to destruction due to the instability of its proper oscillations, which explains the numerous systems of fractures and cracks observed on Europa’s surface. The stress-strain state of such an ice crust is calculated within the framework of a non-linear thermo-elasticity model. The role of short-period temperature variations at Europa’s surface is estimated and the peculiarities of relief observed on this planet are analysed.


Sign in / Sign up

Export Citation Format

Share Document