scholarly journals Spots and Flares in Hot Main Sequence Stars Observed by Kepler, K2, and TESS

Author(s):  
Luis A. Balona

About 22,000 Kepler stars, 7,000 K2 stars, and nearly 60,000 TESS stars from sectors 1–24 have been classified according to variability type. A large proportion of stars of all spectral types appear to have periods in their light curves consistent with the expected rotation periods. A previous analysis of A- and late B-type stars suggests that these stars are indeed rotational variables. In this paper we have accumulated data to show that rotational modulation is present in about 30–40% of A- and B-type stars. A search for flares in TESS A- and B-type stars resulted in the detection of 102 flares in 57 stars. Analysis of flare energies show that the source of the flares cannot be a cool dwarf companion nor a F/G giant. The realization that a considerable fraction of A- and B-type stars are active indicates that a revision of current concepts regarding hot star envelopes is required.

2019 ◽  
Vol 628 ◽  
pp. A41 ◽  
Author(s):  
D. Pizzocaro ◽  
B. Stelzer ◽  
E. Poretti ◽  
S. Raetz ◽  
G. Micela ◽  
...  

The relation between magnetic activity and rotation in late-type stars provides fundamental information on stellar dynamos and angular momentum evolution. Rotation-activity studies found in the literature suffer from inhomogeneity in the measurement of activity indexes and rotation periods. We overcome this limitation with a study of the X-ray emitting, late-type main-sequence stars observed by XMM-Newton and Kepler. We measured rotation periods from photometric variability in Kepler light curves. As activity indicators, we adopted the X-ray luminosity, the number frequency of white-light flares, the amplitude of the rotational photometric modulation, and the standard deviation in the Kepler light curves. The search for X-ray flares in the light curves provided by the EXTraS (Exploring the X-ray Transient and variable Sky) FP-7 project allows us to identify simultaneous X-ray and white-light flares. A careful selection of the X-ray sources in the Kepler field yields 102 main-sequence stars with spectral types from A to M. We find rotation periods for 74 X-ray emitting main-sequence stars, 20 of which do not have period reported in the previous literature. In the X-ray activity-rotation relation, we see evidence for the traditional distinction of a saturated and a correlated part, the latter presenting a continuous decrease in activity towards slower rotators. For the optical activity indicators the transition is abrupt and located at a period of ~10 d but it can be probed only marginally with this sample, which is biased towards fast rotators due to the X-ray selection. We observe seven bona-fide X-ray flares with evidence for a white-light counterpart in simultaneous Kepler data. We derive an X-ray flare frequency of ~0.15 d−1, consistent with the optical flare frequency obtained from the much longer Kepler time-series.


2019 ◽  
Vol 489 (4) ◽  
pp. 5513-5529 ◽  
Author(s):  
Kaiming Cui ◽  
Jifeng Liu ◽  
Shuhong Yang ◽  
Qing Gao ◽  
Huiqin Yang ◽  
...  

ABSTRACT Stellar rotation plays a key role in stellar activity. The rotation period could be detected through light curve variations caused by star-spots. Kepler provides two types of light curves: one is the Pre-search Data Conditioning (PDC) light curves, and the other is the Simple Aperture Photometer (SAP) light curves. Compared with the PDC light curves, the SAP light curves keep the long-term trend, relatively suitable for searches of long-period signals. However, SAP data are inflicted by some artefacts such as quarterly rolls and instrumental errors, making it difficult to find the physical periods in the SAP light curves. We explore a systematic approach based on the light curve pre-processing, period detection, and candidate selection. We also develop a simulated light curve test to estimate our detection limits for the SAP-like LCs. After applying our method to the raw SAP light curves, we found more than 1000 main-sequence stars with periods longer than 30 d; 165 are newly discovered. Considering the potential flaw of the SAP, we also inspect the newly found objects with photometry methods, and most of our periodical signals are confirmed.


2004 ◽  
Vol 215 ◽  
pp. 125-126 ◽  
Author(s):  
M. Lamm ◽  
C.A.L. Bailer-Jones ◽  
R. Mundt ◽  
W. Herbst

We present the results of a photometric monitoring program of pre-main sequence (PMS) stars in the young (2-4 Myr) open cluster NGC 2264 (d=700 pc). We find that the rotation periods are mass dependent and show a bimodal distribution for higher mass stars with M ≳ 0.3 M⊙ and a unimodal distribution for lower mass stars with M ≲ 0.3 M⊙.


1976 ◽  
Vol 71 ◽  
pp. 473-473
Author(s):  
C. Blanco ◽  
S. Catalano ◽  
E. Marilli

Continuing our previous analysis of the chromospheric emission (Blanco et al., 1974), absolute fluxes of the K emission line have been evaluated from 10 Å mm−1 spectrograms of the O. C. Wilson collection for 31 F5-K7 main sequence stars and 172 G2-M5 giants.


2011 ◽  
Vol 7 (S282) ◽  
pp. 199-200
Author(s):  
Krisztián Vida ◽  
Katalin Oláh ◽  
Zsolt Kővári

AbstractV405 And is an ultrafast-rotating (Prot ≈ 0.46 days) eclipsing binary. The system consists of a primary star with radiative core and convective envelope, and a fully convective secondary. Theories have shown that stellar structure can depend on magnetic activity, i.e., magnetically active M-dwarfs should have larger radii. Earlier light curve modelling of V405 And indeed showed this behaviour: we found that the radius of the primary is significantly larger than the theoretically predicted value for inactive main sequence stars (the discrepancy is the largest of all known objects), while the secondary fits well to the mass-radius relation. By modelling our recently obtained light curves, which show significant changes of the spotted surface of the primary, we can find further proof for this phenomenon.


2004 ◽  
Vol 127 (6) ◽  
pp. 3537-3552 ◽  
Author(s):  
Keivan G. Stassun ◽  
David R. Ardila ◽  
Mary Barsony ◽  
Gibor Basri ◽  
Robert D. Mathieu

2018 ◽  
Vol 618 ◽  
pp. A48 ◽  
Author(s):  
M. Mittag ◽  
J. H. M. M. Schmitt ◽  
K.-P. Schröder

The connection between stellar rotation, stellar activity, and convective turnover time is revisited with a focus on the sole contribution of magnetic activity to the Ca II H&K emission, the so-called excess flux, and its dimensionless indicator R+HK in relation to other stellar parameters and activity indicators. Our study is based on a sample of 169 main-sequence stars with directly measured Mount Wilson S-indices and rotation periods. The R+HK values are derived from the respective S-indices and related to the rotation periods in various B–V-colour intervals. First, we show that stars with vanishing magnetic activity, i.e. stars whose excess flux index R+HK approaches zero, have a well-defined, colour-dependent rotation period distribution; we also show that this rotation period distribution applies to large samples of cool stars for which rotation periods have recently become available. Second, we use empirical arguments to equate this rotation period distribution with the global convective turnover time, which is an approach that allows us to obtain clear relations between the magnetic activity related excess flux index R+HK, rotation periods, and Rossby numbers. Third, we show that the activity versus Rossby number relations are very similar in the different activity indicators. As a consequence of our study, we emphasize that our Rossby number based on the global convective turnover time approaches but does not exceed unity even for entirely inactive stars. Furthermore, the rotation-activity relations might be universal for different activity indicators once the proper scalings are used.


2004 ◽  
Vol 215 ◽  
pp. 113-122 ◽  
Author(s):  
Robert D. Mathieu

Major photometric monitoring campaigns of star-forming regions in the past decade have provided rich rotation period distributions of pre-main-sequence stars. The rotation periods span more than an order of magnitude in period, with most falling between 1 and 10 days. Thus the broad rotation period distributions found in 100 Myr clusters are already established by an age of 1 Myr. The most rapidly rotating stars are within a factor of 2-3 of their critical velocities; if angular momentum is conserved as they evolve to the ZAMS, these stars may come to exceed their critical velocities. Extensive efforts have been made to find connections between stellar rotation and the presence of protostellar disks; at best only a weak correlation has been found in the largest samples. Magnetic disk-locking is a theoretically attractive mechanism for angular momentum evolution of young stars, but the links between theoretical predictions and observational evidence remain ambiguous. Detailed observational and theoretical studies of the magnetospheric environments will provide better insight into the processes of pre-main-sequence stellar angular momentum evolution.


Author(s):  
Jiaxin Wang ◽  
Jianning Fu ◽  
Hubiao Niu ◽  
Yang Pan ◽  
Chunqian Li ◽  
...  

Abstract We study the detached eclipsing binary, KIC 5359678, with starspot modulation using the high-quality Kepler photometry and LAMOST spectroscopy. The PHOEBE model, optimal for this binary, reveals that this system is a circular detached binary, composed of two F-type main-sequence stars. The masses and radii of the primary and the secondary are M1 = 1.31 ± 0.05M⊙, R1 = 1.52 ± 0.04R⊙, M2 = 1.12 ± 0.04M⊙, and R2 = 1.05 ± 0.06R⊙, respectively. The age of this binary is estimated to be about 2Gyr, a value much longer than the synchronization timescale of 17.8 Myr. The residuals of light curves show quasi-sinusoidal signals, which could be induced by starspots. We apply auto-correlation function analysis on the out-of-eclipse residuals and find that the spot with rotational period close to the orbital period, while, the decay timescale of starspots is longer than that on the single stars with the same temperature, period range, and rms scatter. A two-starspot model is adopted to fit the signals with two-dip pattern, whose result shows that the longitude decreases with time.


Sign in / Sign up

Export Citation Format

Share Document