scholarly journals Neural Network Reconstruction of Plasma Space-Time

Author(s):  
C. Bard ◽  
J.C. Dorelli

We explore the use of Physics-Informed Neural Networks (PINNs) for reconstructing full magnetohydrodynamic solutions from partial samples, mimicking the recreation of space-time environments around spacecraft observations. We use one-dimensional magneto- and hydrodynamic benchmarks, namely the Sod, Ryu-Jones, and Brio-Wu shock tubes, to obtain the plasma state variables along linear trajectories in space-time. These simulated spacecraft measurements are used as constraining boundary data for a PINN which incorporates the full set of one-dimensional (magneto) hydrodynamics equations in its loss function. We find that the PINN is able to reconstruct the full 1D solution of these shock tubes even in the presence of Gaussian noise. However, our chosen PINN transformer architecture does not appear to scale well to higher dimensions. Nonetheless, PINNs in general could turn out to be a promising mechanism for reconstructing simple magnetic structures and dynamics from satellite observations in geospace.

1991 ◽  
Vol 43 (1) ◽  
pp. 679-688 ◽  
Author(s):  
A. Harrison ◽  
M. F. Collins ◽  
J. Abu-Dayyeh ◽  
C. V. Stager

1977 ◽  
Vol 99 (2) ◽  
pp. 85-90 ◽  
Author(s):  
L. S. Bonderson

The system properties of passivity, losslessness, and reciprocity are defined and their necessary and sufficient conditions are derived for a class of linear one-dimensional multipower distributed systems. The utilization of power product pairs as state variables and the representation of the dynamics in first-order form allows results completely analogous to those for lumped-element systems.


2021 ◽  
Author(s):  
Deep Bhattacharjee ◽  
Sanjeevan Singha Roy

Higher dimensions are impossible to visualize as the size of dimension varies inversely proportional to its level. The more the dimension ranges, the least its size. We are a set of points living in a particular point of space and a particular frame of time. i.e, we live in space-time. The space has more dimensions that meets the human eye. We are living in a world of hyper-space. Our world being a smaller dimension is floating in higher dimensions. The quest for the visually of higher dimensions has been a fantasy to mankind but this aspect of nature is completely locked. We can transform dimensions i.e., from higher to lower dimensions, or from lower to higher dimensions, but only through mathematics. The relative notion of mathematics helps us to do the thing, which is perhaps impossible in the experimental part of physical reality. Humans being an element of 3 Dimensions – length, breath, height can only perceive one higher dimensions, that is space-time. but beyond that the notion of dimension itself changes. The dimensions got curled up in every intersection of the coordinates of space in such a way that the higher dimensions remain stable to us. But in reality it is highly unstable. In the higher dimensions, above 4, the space is tearing apart and joining again spontaneously, but the tearing portion itself covered by 2 dimensional Branes which acts as a stabilizer for the unstable dimensions. Dimensions will get smaller and smaller with the space-time interwoven in it. But at Planks length that is 10^-33 meter, the notion of space-time itself breaks down thereby making impossible for the higher dimensions to coexist along with space. Without space, there will be no identity of any dimension. The space itself is the fabric for the milestone of residing higher dimensions. Imagine our room, which is 3 dimensional. But what is there inside the room. The space and of course the time. Space-time being a totally separate entity is not quite separate when compared with other dimensions because it makes the residing place for the higher dimensions or the hyperspace itself. We all are confined within a lower dimensional world within a randomness of higher dimensions. Time being alike like space is an arrow which has the capability of slicing space into different forms. Thereby taking a snapshot of our every nano-second we vibrate within space-time. As each slice of time represents each slice of space, similarly each slice of space represents each slice of time. The nature of space-time is beyond human consciousness. It is the identity by which we breathe, we play, we survive. It is the whole localization of species that encompasses itself with space thereby making space-time a relative quantity depending upon the reference frame. The only thing that can encompass space-time or even change the relative definition of space-time is the speed, the speed far beyond the speed of light. The more the speed, the less the array of time flows. Space-time being an invisible entity makes the other dimensions visible residing in it only into the level of 3, that is l, b, h. After that there is a infamous structure formed by the curling of higher dimensions called CALABI-YAU manifold. This manifold depicts the usual nature of the dimensional quadrants of the higher order by containing a number of small spherical spheres inside it. The mathematics of string theory is still unable to solve the genus and the containing spheres of the manifold which can be the ultimate quest for the hidden dimensions. Hidden, as, the higher dimensions are hidden from human perspective of macro level but if we probe deeper into the fabric of the space-time of General Relativity then we will find the 5th dimension according to the Kaluza-Klein theory. And if we probe even deeper into it at the perspective of string theory we will be amazed to see the real nature of quantum world. They are so marvelously beautiful, they contain so many forms of higher dimensions ranging from 6 to 10. And even many more of that, but we are still not sure about it where they may exist in a ghost state. After all, the quantum nature is far more beautiful that one can even imagine with a full faze of weirdness.


2017 ◽  
Vol 22 (1) ◽  
pp. 107-123 ◽  
Author(s):  
Savithru Jayasinghe ◽  
David L. Darmofal ◽  
Nicholas K. Burgess ◽  
Marshall C. Galbraith ◽  
Steven R. Allmaras

1972 ◽  
Vol 94 (1) ◽  
pp. 1-7 ◽  
Author(s):  
O. B. Dale ◽  
R. Cohen

A method is presented for obtaining and optimizing the frequency response of one-dimensional damped linear continuous systems. The systems considered are assumed to contain unknown constant parameters in the boundary conditions and equations of motion which the designer can vary to obtain a minimum resonant response in some selected frequency interval. The unknown parameters need not be strictly dissipative nor unconstrained. No analytic solutions, either exact or approximate, are required for the system response and only initial value numerical integrations of the state and adjoint differential equations are required to obtain the optimal parameter set. The combinations of state variables comprising the response and the response locations are arbitrary.


2004 ◽  
Vol 41 (01) ◽  
pp. 83-92 ◽  
Author(s):  
Jean Bérard

The central limit theorem for random walks on ℤ in an i.i.d. space-time random environment was proved by Bernabeiet al.for almost all realization of the environment, under a small randomness assumption. In this paper, we prove that, in the nearest-neighbour case, when the averaged random walk is symmetric, the almost sure central limit theorem holds for anarbitrarylevel of randomness.


Sign in / Sign up

Export Citation Format

Share Document