scholarly journals The Internal-to-External Load Ratio: A Tool to Determine the Efficacy of Heat Acclimation/Acclimatization Using Self-Paced Exercise

2022 ◽  
Vol 3 ◽  
Author(s):  
Julian Andro P. Ramos ◽  
Carly J. Brade ◽  
Kagan J. Ducker ◽  
Grant J. Landers ◽  
Olivier Girard
2007 ◽  
Vol 40 ◽  
pp. S638
Author(s):  
H-L Deng ◽  
W-Y Gong ◽  
H Tsao ◽  
L-Y Guo ◽  
C-H Yang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 419
Author(s):  
Congzheng Qi ◽  
Zemin Ding ◽  
Lingen Chen ◽  
Yanlin Ge ◽  
Huijun Feng

Based on finite time thermodynamics, an irreversible combined thermal Brownian heat engine model is established in this paper. The model consists of two thermal Brownian heat engines which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the losses caused by kinetic energy change of particles, the formulas of steady current, power output and efficiency are derived. The power output and efficiency of combined heat engine are smaller than that of single heat engine operating between reservoirs with same temperatures. When the potential filed is free from external load, the effects of asymmetry of the potential, barrier height and heat leakage on the performance of the combined heat engine are analyzed. When the potential field is free from external load, the effects of basic design parameters on the performance of the combined heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier heights of two heat engines. The optimal working regions are obtained. There is optimal temperature ratio which maximize the overall power output or efficiency. When the potential filed is subjected to external load, effect of external load is analyzed. The steady current decreases versus external load; the power output and efficiency are monotonically increasing versus external load.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1505
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, a semi-analytic approach to optimizing the external load resistance of a bi-stable electromagnetic energy harvester is presented based on the harmonic balance method. The harmonic balance analyses for the primary harmonic (period-1T) and two subharmonic (period-3T and 5T) interwell motions of the energy harvester are performed with the Fourier series solutions of the individual motions determined by spectral analyses. For each motion, an optimization problem for maximizing the output power of the energy harvester is formulated based on the harmonic balance solutions and then solved to estimate the optimal external load resistance. The results of a parametric study show that the optimal load resistance significantly depends on the inductive reactance and internal resistance of a solenoid coil––the higher the oscillation frequency of an interwell motion (or the larger the inductance of the coil) is, the larger the optimal load resistance. In particular, when the frequency of the ambient vibration source is relatively high, the non-linear dynamic characteristics of an interwell motion should be considered in the optimization process of the electromagnetic energy harvester. Compared with conventional resistance-matching techniques, the proposed semi-analytic approach could provide a more accurate estimation of the external load resistance.


2021 ◽  
Vol 56 (211) ◽  
pp. 100357
Author(s):  
Javier Espasa Labrador ◽  
Javier Peña ◽  
Toni Caparrós Pons ◽  
Michael Cook ◽  
Azahara Fort Vanmeerhaeghe

Author(s):  
Robert D. McIntyre ◽  
Michael J. Zurawlew ◽  
Samuel J. Oliver ◽  
Andrew T. Cox ◽  
Jessica A. Mee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document