scholarly journals Composts Produced From Pig Slurry Solids: Nutrient Efficiency and N-Leaching Risks in Amended Soils

Author(s):  
André Santos ◽  
David Fangueiro ◽  
Raul Moral ◽  
Maria Pilar Bernal
2005 ◽  
Vol 34 (3) ◽  
pp. 1131-1137 ◽  
Author(s):  
César Plaza ◽  
Juan C. García-Gil ◽  
Alfredo Polo ◽  
Nicola Senesi ◽  
Gennaro Brunetti

2006 ◽  
Vol 143 (2) ◽  
pp. 212-220 ◽  
Author(s):  
Diana Hernández ◽  
César Plaza ◽  
Nicola Senesi ◽  
Alfredo Polo

2006 ◽  
Vol 18 (2) ◽  
pp. 159-165 ◽  
Author(s):  
César Plaza ◽  
Juan C. García-Gil ◽  
Alfredo Polo

2017 ◽  
Vol 79 ◽  
pp. 139-145
Author(s):  
S.F. Ledgard ◽  
N.L. Bartlett ◽  
P.J. Van Boheemen ◽  
B.R. Wilton ◽  
S.B. Allen ◽  
...  

Abstract The effects of increased use of brought-in feeds were evaluated across 25 dairy farms in central Waikato. Farms were classified into low, medium and high feedinput categories based on 1200 kg DM/cow, covering a range typical of that in the main dairying regions of New Zealand. Average milksolids (MS)/ha was 1087 and 1900 kg in the low and high feed-input categories, but total land-use/tonne MS was the same when all off-farm land was accounted for. Average estimated on-farm nitrogen (N) leaching increased from 26 to 30 kg N/ha/year between the low and high feed-input categories, but off-farm leaching sources were equivalent to an increase of 20 and 84%, respectively. Greenhouse gas emissions/on-farm hectare were 61% higher on high feed-input farms, but the carbon footprint and N leaching per tonne MS were similar across feed-input categories. High feed-input farms used feed-pads and increased effluent area (66 versus 21% of farm) to increase nutrient efficiency. Mitigation analyses indicated that N leaching could be decreased by optimising effluent area, reducing N fertiliser rate and utilising low-N feeds. Keywords: nitrogen leaching, whole farm system, greenhouse gases, land use


1997 ◽  
Vol 128 (1) ◽  
pp. 79-86 ◽  
Author(s):  
K. SIELING ◽  
O. GÜNTHER-BORSTEL ◽  
H. HANUS

Nitrogen (N) fertilizer not used by the crop can increase the risk of nitrate leaching into the groundwater. In two growing seasons, 1990/91 and 1991/92, the relationships between N fertilization and yield, N uptake by the grain and the N leaching in the subsequent percolation period were investigated in a multifactorial field experiment at Hohenschulen Experimental Station near Kiel in NW Germany. The crop rotation was oilseed rape – winter wheat – winter barley, and effects of soil tillage (minimum tillage without ploughing, conventional tillage), application of pig slurry (none, application in autumn, application in autumn and in spring), mineral N fertilization (none, 80 or 200 kg N ha−1 to oilseed rape and 120 or 240 kg N ha−1 to cereals) and application of fungicides (none, intensive) were all tested. In each year, the rotation and the treatments were located on the same plots. Mineral N fertilization and fungicide application increased yield and N uptake by grain or seed in all crops. In contrast, the application of slurry, especially in autumn, had only small effects on yield and N uptake. Nitrogen losses by leaching (measured using porous ceramic cups) were affected mainly by the year and the crop. In 1992/93, averaged over all factors, 80 kg N ha−1 was leached compared with 28 kg N ha−1 the previous year. Oilseed rape reduced N losses, whereas under winter wheat up to 160 kg N ha−1 was leached. Due to a lower N-use efficiency, autumn applications of slurry increased N leaching, and mineral N fertilization of the preceding crop also led to higher N losses.Since the amount of leached N depends both on the nitrogen left by the preceding crop (unused fertilizer N as well as N in residues) and on N uptake by the subsequent crop, it is not possible to apportion the N losses to any particular crop in the rotation. The cropping sequence, together with its previous and subsequent crops, must also be considered.To minimize leaching, N fertilization must meet the needs of the growing crop. In order to improve the efficiency further, investigations must be conducted in order to understand the dynamics of N in the plant–soil system in conjunction with the weather and crop management practices.


2005 ◽  
Vol 36 (15-16) ◽  
pp. 2137-2152 ◽  
Author(s):  
César Plaza ◽  
Juan C. García‐Gil ◽  
Alfredo Polo

Chemosphere ◽  
2005 ◽  
Vol 61 (5) ◽  
pp. 711-716 ◽  
Author(s):  
C. Plaza ◽  
N. Senesi ◽  
J.C. García-Gil ◽  
A. Polo

2012 ◽  
Vol 58 (No. 12) ◽  
pp. 545-550 ◽  
Author(s):  
M. Kayser ◽  
M. Benke ◽  
J. Isselstein

Relatively little is known about potassium leaching losses following harvest of silage maize. While direct negative impacts on the environment are unlikely, losses of K with leaching need to be known for accurate balancing, especially on coarse textured soils, where K can be a critical element. In a four-year field experiment the effects of fertilizer forms (inorganic, cattle slurry and pig slurry) and four levels of N input (0, 80, 160, 240 kg N/ha) with corresponding amounts of K on the nutrient balances and leaching of K from silage maize grown on a sandy soil were investigated using suction cups. After four years, surplus of K from cattle slurry led to higher lactate-soluble K in the topsoil. Potassium leaching differed between years with different amounts of rainfall during winter. Annual leaching losses of K increased with N and K input and amounted to 38 kg K/ha, while fertilizer form had no significant effect. Losses of K increased with increasing N leaching (R<sup>2</sup> = 0.69). We conclude that in maize production on coarse textured soils and under conditions of high N leaching (86&ndash;152 kg N/ha), K leaching can be large (6&ndash;84 kg K/ha) and constitutes a relevant part of K balances (&ndash;84 to +127 kg K/ha). &nbsp; &nbsp;


Sign in / Sign up

Export Citation Format

Share Document