scholarly journals Improving Nitrogen Use Efficiency—A Key for Sustainable Rice Production Systems

2021 ◽  
Vol 5 ◽  
Author(s):  
Pauline Chivenge ◽  
Sheetal Sharma ◽  
Michelle Anne Bunquin ◽  
Jon Hellin

Fertilizer use and genetic improvement of cereal crops contributed to increased yields and greater food security in the last six decades. For rice, however, fertilizer use has outpaced improvement in yield. Excess application of nutrients beyond crop needs, especially nitrogen (N), is associated with losses to the environment. Environmental pollution can be mitigated by addressing fertilizer overuse, improving N use efficiency, while maintaining or improving rice productivity and farmers' income. A promising approach is the site-specific nutrient management (SSNM), developed in the 1990s to optimize supply to meet demand of nutrients, initially for rice, but now extended to other crops. The SSNM approach has been further refined with the development of digital decision support tools such as Rice Crop Manager, Nutrient Expert, and RiceAdvice. This enables more farmers to benefit from SSNM recommendations. In this mini-review, we show how SSNM can foster sustainability in rice production systems through improved rice yields, profit, and N use efficiency while reducing N losses. Farmer adoption of SSNM, however, remains low. National policies and incentives, financial investments, and strengthened extension systems are needed to enhance scaling of SSNM-based decision support tools.

2012 ◽  
Vol 150 (5) ◽  
pp. 630-643 ◽  
Author(s):  
W. RYAN ◽  
D. HENNESSY ◽  
T. M. BOLAND ◽  
L. SHALLOO

SUMMARYThere is a continual requirement for grass-based production systems to optimize economic and environmental sustainability through increased efficiency in the use of all inputs, especially nitrogen (N). An N balance model was used to assess N use efficiency and N surplus, and to predict N losses from grass-based dairy production systems differing in the length of the grazing season (GS). Data from a 3-year grazing study with a 3×3 factorial design, with three turnout dates (1 February, 21 February and 15 March) and three housing dates (25 October, 10 November and 25 November) were used to generate estimates of N use efficiency and N losses. As the length of the GS increased by a mean of 30 days, milk production, milk solids production and milk N output increased by 3, 6 and 6%, respectively. The increase in milk production as the length of the GS increased resulted in a 2% decline in N surplus and a 5% increase in N use efficiency. Increasing GS length increased the proportion of grazed grass in the diet, which increased N cycling within the system, resulting in an 8% increase in milk solids/ha produced/kg of surplus N. The increased cycling of N reduced the quantity of N partitioned for loss to the environment by 8%. Reducing fertilizer N input by 20% increased N use efficiency by 22% and reduced total N losses by 16%. The environmental and production consequences of increased length of the GS and reduced N loss are favourable as the costs associated with N inputs increase.


2017 ◽  
Vol 209 ◽  
pp. 39-46 ◽  
Author(s):  
Meng Wang ◽  
Lichun Wang ◽  
Zhenling Cui ◽  
Xinping Chen ◽  
Jiagui Xie ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 114-121 ◽  
Author(s):  
Lenz Haderlein ◽  
T.L. Jensen ◽  
R.E. Dowbenko ◽  
A.D. Blaylock

Controlled release nitrogen (N) fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU) product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha-1. Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching.


Soil Research ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 479 ◽  
Author(s):  
Cecile A. M. de Klein ◽  
Ross M. Monaghan ◽  
Marta Alfaro ◽  
Cameron J. P. Gourley ◽  
Oene Oenema ◽  
...  

Nitrogen (N) is invaluable for maintaining agricultural production, but its use, and particularly inefficient use, can lead to environmental losses. This paper reviews N use efficiency (NUE) and N surplus indicators for dairy production systems to assess their utility for optimising N use outcomes and minimising environmental N losses. Using case-study examples, we also assess realistic goals for these indicators and discuss key issues associated with their use. Published whole-farm NUE and whole-farm N surplus values ranged within 10–65% and 40–700 kg N ha–1 year–1 respectively. In a study of five catchments across New Zealand, whole-farm NUE was more strongly affected by catchment differences in soil and climatic conditions than by differences in management. In contrast, whole-farm N surplus differed both between- and within-catchments and was a good indicator of N losses to water. Realistic goals for both NUE and N surplus thus depend on the agro-climatic context of the dairy system and on its economic and environmental goals. Crop and animal NUE values can be valuable indicators for optimising fertiliser and feed use and minimising N losses. However, global or national whole-farm NUE values appear of limited value if the ultimate goal for setting targets is to reduce the environmental impact of N use; whole-farm level targets based on N surplus would be a more useful indicator for this purpose. Our review also reinforces the importance of standardising the variables that should be used to estimate NUE and N surplus values, to ensure equitable comparisons between different systems. Finally, NUE and N surplus targets should also be set in the context of other agro-environmental considerations.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 554
Author(s):  
Jiangwen Nie ◽  
Lixia Yi ◽  
Heshui Xu ◽  
Zhangyong Liu ◽  
Zhaohai Zeng ◽  
...  

Chinese milk vetch (Astragalus sinicus L., vetch), a leguminous winter cover crop, has been widely adopted by farmers in southern China to boost yield of the succeeding rice crop. However, the effects of vetch on rice grain yield and nitrogen (N) use efficiency have not yet been well studied in the intensive double-cropped rice cropping systems. To fill this gap, we conducted a three-year field experiment to evaluate the impacts of the vetch crop on yields and N use efficiency in the subsequent early and late rice seasons. With moderate N input (100 kg N ha−1 for each rice crop), vetch cover significantly increased grain yields by 7.3–13.4% for early rice, by 8.2–10.4% for late rice, and by 8.6–11.5% for total annual rice production when compared with winter fallow. When rice crops received an N input of 200 kg N ha−1, vetch cover increased grain yields by 5.9–18.4% for early rice, by 3.8–10.1% for late rice, and by 6.2–11.3% for annual rice production. Moreover, comparable grain yields (11.9 vs. 12.0 Mg ha−1 for annual rice production) were observed between vetch cover with moderate N and fallow with added N fertilizer. Yield components analysis indicated that the increased tillering number was the main factor for the enhanced grain yields by vetch cover. Vetch cover with moderate and higher N input resulted in higher agronomic N use efficiency and applied N recovery efficiency compared with the fallow treatments. Here, our results showed that vetch as a winter cover crop can be combined with reduced N fertilizer input while maintaining high grain yields, thus gaining a more sustainable rice production system.


2021 ◽  
Vol 319 ◽  
pp. 107546
Author(s):  
Guillermo Guardia ◽  
Sandra García-Gutiérrez ◽  
Rocío Rodríguez-Pérez ◽  
Jaime Recio ◽  
Antonio Vallejo

2019 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
RS Rea ◽  
MR Islam ◽  
MM Rahman ◽  
K Mix

Continuous increase of nitrogen fertilizer use adversely affecting the soil health as well as the environment. It necessitates the systematic study of the impact of nitrogen (N) fertilizer use-reduction on crop yield. In this article, the effects of deep placement of nitrogen fertilizers on nitrogen use efficiency (NUE) and yield of rice variety “BRRI dhan46” were investigated and compared for three N formulations: urea super granule (USG), NPK briquettes and prilled urea (PU). The experiment was conducted in randomized complete block design (RCBD) with eight N treatments replicated three times. The treatments were applied by varying doses (0, 52, 78 and 104 kg ha-1) of nitrogen fertilizers in a known identical soil and weather condition. Applications of PU, USG and NPK briquettes exhibited significant differences on yield attributes of rice. Results revealed maximum grain yield of 6.391 t ha-1 (54% increases over control) for the dose USG 104 kg ha-1 which is statistically similar to the dose USG 78 kg ha-1 and NPK briquettes 104 kg ha-1. The deep placement of USG and NPK briquettes enhanced both the recovery of applied N and N use efficiency compared to broadcast application of prilled urea. However, USG 78 kg ha-1 showed maximum apparent N recovery, N use efficiency, gross margin and marginal benefit-cost ratio. Thus, an application of 78 kg ha-1 USG can be recommended for profitable cultivation of rice variety BRRI dhan46. SAARC J. Agri., 17(1): 93-103 (2019)


Sign in / Sign up

Export Citation Format

Share Document