scholarly journals Controlled Release Urea as a Nitrogen Source for Spring Wheat in Western Canada: Yield, Grain N Content, and N Use Efficiency

2001 ◽  
Vol 1 ◽  
pp. 114-121 ◽  
Author(s):  
Lenz Haderlein ◽  
T.L. Jensen ◽  
R.E. Dowbenko ◽  
A.D. Blaylock

Controlled release nitrogen (N) fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU) product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha-1. Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching.

2017 ◽  
Vol 209 ◽  
pp. 39-46 ◽  
Author(s):  
Meng Wang ◽  
Lichun Wang ◽  
Zhenling Cui ◽  
Xinping Chen ◽  
Jiagui Xie ◽  
...  

2012 ◽  
Vol 150 (5) ◽  
pp. 630-643 ◽  
Author(s):  
W. RYAN ◽  
D. HENNESSY ◽  
T. M. BOLAND ◽  
L. SHALLOO

SUMMARYThere is a continual requirement for grass-based production systems to optimize economic and environmental sustainability through increased efficiency in the use of all inputs, especially nitrogen (N). An N balance model was used to assess N use efficiency and N surplus, and to predict N losses from grass-based dairy production systems differing in the length of the grazing season (GS). Data from a 3-year grazing study with a 3×3 factorial design, with three turnout dates (1 February, 21 February and 15 March) and three housing dates (25 October, 10 November and 25 November) were used to generate estimates of N use efficiency and N losses. As the length of the GS increased by a mean of 30 days, milk production, milk solids production and milk N output increased by 3, 6 and 6%, respectively. The increase in milk production as the length of the GS increased resulted in a 2% decline in N surplus and a 5% increase in N use efficiency. Increasing GS length increased the proportion of grazed grass in the diet, which increased N cycling within the system, resulting in an 8% increase in milk solids/ha produced/kg of surplus N. The increased cycling of N reduced the quantity of N partitioned for loss to the environment by 8%. Reducing fertilizer N input by 20% increased N use efficiency by 22% and reduced total N losses by 16%. The environmental and production consequences of increased length of the GS and reduced N loss are favourable as the costs associated with N inputs increase.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Hua ◽  
Peiyu Luo ◽  
Ning An ◽  
Fangfang Cai ◽  
Shiyu Zhang ◽  
...  

Abstract It is great of importance to better understand the effects of the long-term fertilization on crop yields, soil properties and nitrogen (N) use efficiency in a rotation cropping cultivation system under the conditions of frequent soil disturbance. Therefore, a long-term field experiment of 40 years under soybean-maize rotation was performed in a brown soil to investigate the effects of inorganic and organic fertilizers on crop yields, soil properties and nitrogen use efficiency. Equal amounts of 15N-labelled urea with 20.8% of atom were used and uniformly applied into the micro-plots of the treatments with N, NPK, M1NPK, M2NPK before soybean sowing, respectively. Analyses showed that a total of 18.3–32.5% of applied N fertilizer was taken up by crops in the first soybean growing season, and that the application of manure combining with chemical fertilizer M2NPK demonstrated the highest rate of 15N recovery and increased soil organic matter (SOM) and Olsen phosphorus (Olsen P), thereby sustaining a higher crop yield and alleviating soil acidification. Data also showed that no significant difference was observed in the 15N recovery from residue N in the second maize season plant despite of showing a lower 15N recovery compared with the first soybean season. The recovery rates of 15N in soils were ranged from 38.2 to 49.7% by the end of the second cropping season, and the residuals of 15N distribution in soil layers revealed significant differences. The M2NPK treatment demonstrated the highest residual amounts of 15N, and a total of 50% residual 15N were distributed in a soil layer of 0–20 cm. Our results showed that long-term application of organic fertilizers could effectively promote N use efficiency by increasing SOM and improving soil fertility, and thus leading to an increase in crop yields. This study will provide a scientific reference and guidance for improving soil sustainable productivity by manure application.


2021 ◽  
Vol 319 ◽  
pp. 107546
Author(s):  
Guillermo Guardia ◽  
Sandra García-Gutiérrez ◽  
Rocío Rodríguez-Pérez ◽  
Jaime Recio ◽  
Antonio Vallejo

2021 ◽  
Vol 5 ◽  
Author(s):  
Pauline Chivenge ◽  
Sheetal Sharma ◽  
Michelle Anne Bunquin ◽  
Jon Hellin

Fertilizer use and genetic improvement of cereal crops contributed to increased yields and greater food security in the last six decades. For rice, however, fertilizer use has outpaced improvement in yield. Excess application of nutrients beyond crop needs, especially nitrogen (N), is associated with losses to the environment. Environmental pollution can be mitigated by addressing fertilizer overuse, improving N use efficiency, while maintaining or improving rice productivity and farmers' income. A promising approach is the site-specific nutrient management (SSNM), developed in the 1990s to optimize supply to meet demand of nutrients, initially for rice, but now extended to other crops. The SSNM approach has been further refined with the development of digital decision support tools such as Rice Crop Manager, Nutrient Expert, and RiceAdvice. This enables more farmers to benefit from SSNM recommendations. In this mini-review, we show how SSNM can foster sustainability in rice production systems through improved rice yields, profit, and N use efficiency while reducing N losses. Farmer adoption of SSNM, however, remains low. National policies and incentives, financial investments, and strengthened extension systems are needed to enhance scaling of SSNM-based decision support tools.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2005
Author(s):  
Carlos Alexandre Costa Crusciol ◽  
Letusa Momesso ◽  
Murilo de Campos ◽  
João William Bossolani ◽  
José Roberto Portugal ◽  
...  

Liming and N fertilization are common practices for optimizing crop yields in tropical agriculture, but the adequate N rate to ensure crop development, enhance yields and N use efficiency, and improve soil chemical properties has not been established for grass rotation. We assessed the optimal N fertilizer rate for combination with liming in an agricultural system composed of two grasses (maize and rice) in rotation under no-till (NT) conditions. Four N rates (0, 50, 100, and 150 kg N·ha−1) were tested under two liming conditions. Maize (11 Mg·ha−1) and rice (5 Mg·ha−1) yields were highest with lime and 150 kg N·ha−1 applications. At 18 months after liming, lime application increased soil pH. In addition, combining liming with N fertilization further increased SOM content at all N rates. Lime increased available P, exchangeable Ca2+ and Mg2+, and BS at N rates of 0, 50, and 100 kg N·ha−1. Overall, combining liming and N fertilization is beneficial for grass crops under NT conditions, as evidenced by enhanced maize and rice N use efficiency and yields. N fertilization rates of 100 and 150 kg N·ha−1 under lime amendment provided the best improvements in crop yields in this cropping system.


2018 ◽  
pp. 303-309
Author(s):  
Reza Moradi Talebbeigi ◽  
Seyed Abdolreza Kazemeini ◽  
Hossein Ghadiri ◽  
Mohsen Edalat

The effects of nitrogen (N) on crop yields have historically been assessed with field trials, but selection and use of the best sources and optimal timing N applications have a significant role in realizing the maximum potential of oilseeds quality and quantity. This study was conducted to determine the combine effects of N sources [ammonium nitrate (AN), ammonium sulphate (AS), sulphur coated urea (SCU), and urea (U)] and split N fertilisation [(1/4,3/4,0), (1/3,1/3,1/3), (1/2,1/2,0), and (1/3,2/3,0)] on safflower (Carthamus tinctorius L.) some growth characters, yield and seed quality, and N use efficiency based on a split plot design with three replications at the experimental research station, Shiraz University in 2015 and 2016. The highest safflower dry matter (5140.93 kg ha–1), seed yield (3303.52 kg ha–1) and protein yield (694.95 kg ha–1) were achieved with the application of AN fertiliser in a split pattern of 1/2,1/2,0 (applying half of the N at sowing time and the rest at stem elongation), while the highest oil yield (753.09 kg ha– 1) was observed by U fertiliser and similar split pattern. Applying AN fertiliser and split patterns of 1/3,2/3,0 (applying one third of the N at sowing and two thirds of the N at stem elongation) and 1/4,3/4,0 (applying one quarter of the N at sowing and three quarters at stem elongation) maximised safflower N uptake efficiency (NUpE) (0.78 kg kg–1). However, the highest N utilisation efficiency (NUtE) (43.70 kg kg–1) was obtained when AN fertiliser in a split pattern of 1/2,1/2,0 was applied. On the contrary, applying AS and SCU fertilisers was less effective on safflower performance by all split patterns. It is concluded that applying AN fertiliser in a split pattern of 1/3,2/3,0 and or U fertiliser in a split pattern of 1/2,1/2,0 not only enhanced safflower growth, yield and seed quality improved, but also increased the N use efficiency of safflower.


2010 ◽  
Vol 90 (2) ◽  
pp. 363-372 ◽  
Author(s):  
S S Malhi ◽  
Y K Soon ◽  
C A Grant ◽  
R. Lemke ◽  
N. Lupwayi

Field experiments were conducted on Dark Gray Luvisolic soils (Typic Cryoboralf) from 2004 to 2006 (wheat-canola-barley rotation) near Star City, Saskatchewan, and from 2004 to 2007 (barley-canola-wheat-barley rotation) near Beaverlodge, Alberta. The aim was to compare the effects of controlled-release urea (CRU) vs. conventional urea (hereafter called urea) on seed yield and N (i.e., protein) concentration, and N use efficiency (NUE). The treatments were combinations of tillage system [conventional tillage (CT) and no tillage (NT)], and N source (urea, CRU and a blended mixture), placement method (spring-banded, fall-banded and split application) and application rate (0-90 kg N ha-1). There was no tillage × fertilizer treatment interaction on the measured crop variables. Seed yield and crop N uptake and, to a lesser degree, seed N concentration generally increased with N application to 90 kg N ha-1. Fall-banded CRU or urea generally produced lower crop yield and N uptake than spring-banded CRU or urea. Split application of urea (half each at seeding and tillering) resulted in higher seed yield and N concentration in at least 3 of 7 site-years than did CRU and urea applied at a similar rate. A blend of urea and CRU was as effective as spring-banded CRU (at Star City only). Seed yield, N recovery and NUE were higher with spring-banded CRU than urea in 2 site-years, and similar to urea in other site-years. We conclude that for boreal soils of the Canadian prairies, spring-banded CRU is as effective as urea, and in some years more effective, in increasing crop yield and N recovery; however, urea split application can be even more effective in addition to having an advantage in managing risk.Key words: Controlled-release urea, Gray Luvisol, nitrogen source, nitrogen recovery, nitrogen use efficiency, tillage systems


HortScience ◽  
2003 ◽  
Vol 38 (7) ◽  
pp. 1378-1380 ◽  
Author(s):  
R. Kasten Dumroese

Juniperus scopularum Sarg. (Rocky Mountain juniper) and Potentilla fruticosa L. `Gold Drop' (gold drop potentilla) plants grown in containers had similar or better morphology, higher nitrogen concentrations and contents, and higher N-use efficiency when grown with liquid fertilizer applied at an exponentially increasing rate as compared to the same amount of N applied via controlled-release fertilizers. More importantly, plants grown with a half-exponential rate were similar to those grown with controlled-release fertilizer but with a higher N-use efficiency, indicating that this type of fertilization may be a method for reducing the amounts of applied nutrients in nurseries and subsequent nutrient discharge.


Sign in / Sign up

Export Citation Format

Share Document