scholarly journals Mechanisms of Anaerobic Soil Disinfestation: Volatile Fatty Acids Reduce Viability of Athelia (Sclerotium) rolfsii Sclerotia in Acidic Soil Conditions and Have Limited Effects on Endemic Trichoderma spp.

2021 ◽  
Vol 5 ◽  
Author(s):  
Keagan J. Swilling ◽  
Utsala Shrestha ◽  
Bonnie H. Ownley ◽  
Kimberly D. Gwinn ◽  
David M. Butler

Volatile fatty acids (VFAs), such as acetic and n-butyric acid, released during anaerobic decomposition of organic soil amendments during anaerobic soil disinfestation (ASD) likely play a role in soilborne plant pathogen inoculum suppression. However, research is limited on the direct effects of soil VFA exposure on fungal plant pathogen inoculum, effects on pathogen antagonists such as Trichoderma spp., and the role of soil microbial VFA metabolism on reducing exposure effects. The present study addresses these limitations through a series of studies evaluating the effects of VFA (acetic or n-butyric acid), VFA concentration (4, 8, or 16 mmol/kg soil), soil sterilization by autoclaving, and soil amendment on the viability of Athelia rolfsii (Sclerotium rolfsii) sclerotia post VFA exposure, and soil populations of Trichoderma spp. HCl and water-only controls were included. After 4-days exposure in an acidic, anaerobic environment, sclerotial viability, and colonization by culturable fungi or bacteria were assessed with standard procedures. Greenhouse experiments were similarly conducted to evaluate endemic soil populations of Trichoderma spp. following soil exposure to VFAs and Trichoderma spp. populations assessed with standard soil dilution plating onto semi-selective medium. Sclerotial germination was generally reduced by soil exposure to acetic (35.1% germination) or n-butyric (21.9% germination) acids compared to water (74.3% germination) and HCl (62.7% germination). Germination was reduced as VFA concentration increased from 4 to 8 and 16 mmol/kg (39.5, 29.1, and 16.9%, respectively). In amended soils, there was no difference in sclerotial germination compared to non-amended soils, but in the greenhouse experiment there was a Trichoderma spp. population increase of over 300% in amended soil [3.4 × 106 colony forming units (CFU)/g soil] compared to the non-amended soil (9.6 × 105 CFU/g soil). Soil autoclaving had no effect on sclerotial germination at low VFA concentrations, but sclerotial germination was reduced at higher VFA concentrations compared to non-autoclaved soil. Our results suggest that VFAs contribute to sclerotial mortality in strongly acidic soil environments, and mortality is influenced by VFA components and environment. Antifungal activity is less for acetic acid than for n-butyric, and less in non-sterile soil environments more typical of field conditions than in sterile laboratory conditions.

2018 ◽  
Vol 108 (3) ◽  
pp. 342-351 ◽  
Author(s):  
Utsala Shrestha ◽  
Mary E. Dee ◽  
Bonnie H. Ownley ◽  
David M. Butler

Growth chamber and field studies were conducted with organic amendment mixtures of carbon (C) and nitrogen (N) at C:N ratios 10:1, 20:1, 30:1, and 40:1 and amendment rates of C at 2, 4, 6, and 8 mg/g of soil (C:N ratio 30:1) to evaluate anaerobic soil disinfestation (ASD) effects on germination and colonization of Sclerotium rolfsii. In the growth chamber, sclerotial germination was reduced in all ASD treatments regardless of C:N ratio (0.6 to 8.5% germination) or amendment rate (7.5 to 46%) as compared with nonamended controls (21 to 36% and 61 to 96%, respectively). ASD treatment increased Trichoderma spp. colonization of sclerotia, with consistently higher colonization in ASD treatments with amendment rates of C at 2 or 4 mg/g of soil (>87% colonization) compared with nonamended controls (<50% colonization). In the 2014 field study, sclerotial germination was reduced by 24 to 30% in ASD treatments when compared with the nonamended control. Sclerotial colonization by Trichoderma spp. was predominant; however, other potential mycoparasites (i.e., Aspergillus spp., Fusarium spp., zygomycetes, and other fungi) were present in the field study. Amendment C:N ratios in the range of 10:1 to 40:1 were equally effective in reducing sclerotial germination and enhancing colonization by potentially beneficial mycoparasites of sclerotia.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruiling Gao ◽  
Zifu Li ◽  
Xiaoqin Zhou ◽  
Wenjun Bao ◽  
Shikun Cheng ◽  
...  

Abstract Background Volatile fatty acids (VFAs) can be effective and promising alternate carbon sources for microbial lipid production by a few oleaginous yeasts. However, the severe inhibitory effect of high-content (> 10 g/L) VFAs on these yeasts has impeded the production of high lipid yields and their large-scale application. Slightly acidic conditions have been commonly adopted because they have been considered favorable to oleaginous yeast cultivation. However, the acidic pH environment further aggravates this inhibition because VFAs appear largely in an undissociated form under this condition. Alkaline conditions likely alleviate the severe inhibition of high-content VFAs by significantly increasing the dissociation degree of VFAs. This hypothesis should be verified through a systematic research. Results The combined effects of high acetic acid concentrations and alkaline conditions on VFA utilization, cell growth, and lipid accumulation of Yarrowia lipolytica were systematically investigated through batch cultures of Y. lipolytica by using high concentrations (30–110 g/L) of acetic acid as a carbon source at an initial pH ranging from 6 to 10. An initial pH of 8 was determined as optimal. The highest biomass and lipid production (37.14 and 10.11 g/L) were obtained with 70 g/L acetic acid, whereas cultures with > 70 g/L acetic acid had decreased biomass and lipid yield due to excessive anion accumulation. Feasibilities on high-content propionic acid, butyric acid, and mixed VFAs were compared and evaluated. Results indicated that YX/S and YL/S of cultures on butyric acid (0.570, 0.144) were comparable with those on acetic acid (0.578, 0.160) under alkaline conditions. The performance on propionic acid was much inferior to that on other acids. Mixed VFAs were more beneficial to fast adaptation and lipid production than single types of VFA. Furthermore, cultures on food waste (FW) and fruit and vegetable waste (FVW) fermentate were carried out and lipid production was effectively improved under this alkaline condition. The highest biomass and lipid production on FW fermentate reached 14.65 g/L (YX/S: 0.414) and 3.20 g/L (YL/S: 0.091) with a lipid content of 21.86%, respectively. By comparison, the highest biomass and lipid production on FVW fermentate were 11.84 g/L (YX/S: 0.534) and 3.08 g/L (YL/S: 0.139), respectively, with a lipid content of 26.02%. Conclusions This study assumed and verified that alkaline conditions (optimal pH 8) could effectively alleviate the lethal effect of high-content VFA on Y. lipolytica and significantly improve biomass and lipid production. These results could provide a new cultivation strategy to achieve simple utilizations of high-content VFAs and increase lipid production. Feasibilities on FW and FVW-derived VFAs were evaluated, and meaningful information was provided for practical applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qian Fang ◽  
Sinmin Ji ◽  
Dingwu Huang ◽  
Zhouyue Huang ◽  
Zilong Huang ◽  
...  

This study explores the use of alkaline pretreatments to improve the hydrolyzation of rice husks to produce volatile fatty acids (VFAs). The study investigated the effects of reagent concentration and pretreatment time on protein, carbohydrates, and dissolved chemical oxygen demand (SCOD) dissolution after the pretreatment. The optimum alkaline pretreatment conditions were 0.30 g NaOH (g VS)−1, with a reaction time of 48 h. The experimental results show that when comparing the total VFA (TVFA) yields from the alkaline-pretreated risk husk with those from the untreated rice husk, over 14 d and 2 d, the maximum value reached 1237.7 and 716.0 mg·L−1 with acetic acid and propionic acid and with acetic acid and butyric acid, respectively. After the alkaline pretreatment, TVFAs increased by 72.9%; VFA accumulation grew over time. The study found that alkaline pretreatment can improve VFA yields from rice husks and transform butyric acid fermentation into propionic acid fermentation. The study results can provide guidelines to support the comprehensive utilization of rice husk and waste treatment.


2013 ◽  
Vol 69 (3) ◽  
pp. 495-503 ◽  
Author(s):  
M.-P. Zacharof ◽  
R. W. Lovitt

Waste effluents from anaerobic digesters of agricultural waste were treated with a range of membranes, including microfiltration and nanofiltration (NF), to concentrate volatile fatty acids (VFA). Microfiltration was applied successfully to produce sterile, particle-free solutions with a VFA concentration of 21.08 mM of acetic acid and 15.81 mM of butyric acid. These were further treated using a variety of NF membranes: NF270 (Dow Chemicals, USA), HL, DL, DK (Osmonics, USA) and LF10 (Nitto Denko, Japan), achieving retention ratios of up to 75%, and giving retentates of up to 53.94 mM of acetate and 28.38 mM of butyrate. DK and NF270 membranes were identified as the best candidates for VFA separation and concentration from these multicomponent effluents, both in terms of retention and permeate flux. When the effluents are adjusted to alkali conditions, the highest productivity, retention and flux were achieved at pH 7. At higher pH there was a significant reduction in flux.


1957 ◽  
Vol 8 (6) ◽  
pp. 691 ◽  
Author(s):  
RL Reid ◽  
JP Hogan ◽  
PK Briggs

Detailed data are presented on changes in the proportions of acetic, propionic, and butyric acids in the rumen after feeding on various diets. Pre-feeding proportions were constant on each diet but varied from a mixture of 72-76 per cent. acetic, 14-16 per cent. propionic, and 10-12 per cent. butyric acid on all-roughage diets to one of 63-65 per cent. acetic, 18-20 per cent. propionic, and 16-18 per cent. butyric acid on a diet containing 70 per cent. wheat grain. On all diets the proportion of propionic acid increased after feeding and reached a peak which coincided with the maximum level of total volatile fatty acids. The response of butyric acid was variable, low levels being recorded on a diet of lucerne chaff and on one containing a high proportion of cracked maize. The proportion of acetic acid always declined after feeding. These responses were modified in experiments on rations containing high proportions of wheaten starch, in which rumen pH fell below 5.0 as a result of lactic acid accumulation. When animals were first fed on such diets, a decline in rumen pH below 5.0-5.5 after feeding was always associated with a pronounced decline in the proportions of propionic and butyric acids, to levels as low as 8 and 5 per cent. respectively. Continued feeding of such diets did not affect the response of butyric acid, but there was evidence of a change in propionic acid production in response to low pH conditions, both in respect to short-term change during experiments in which low rumen pH levels were maintained for considerable periods and to long-term change when such diets were fed intermittently over considerable periods. The implications of these findings are discussed with respect to the effects of pH on individual volatile fatty acid production in the rumen, and on the qualitative nature of the microbial population and on their metabolic patterns.


1993 ◽  
Vol 69 (2) ◽  
pp. 385-396 ◽  
Author(s):  
Jan Dijkstra ◽  
Huug Boer ◽  
Jaap Van Bruchem ◽  
Marianne Bruining ◽  
Seerp Tamminga

The effect of rumen liquid volume, pH and concentration of volatile fatty acids (VFA) on the rates of absorption of acetic, propionic and butyric acids from the rumen was examined in lactating dairy cows. Experimental solutions introduced into the emptied, washed rumen comprised two different volumes (10 or 30 1), four levels of pH (4.5, 5.4, 6.3, 7.2) and three levels of individual VFA concentrations (20, 50 or 100 mM-acetic, propionic or butyric acid). All solutions contained a total of 170 mM-VFA and an osmotic value of 400 mOsmol/l. Absorption rates were calculated from the disappearance of VFA from the rumen corrected for passage with liquid phase to the omasum. An increase in initial fluid pH caused a reduction in fractional absorption rates of propionic and butyric acids. Increasing the initial pH from 4.5 to 7.2 reduced fractional absorption rates of acetic, propionic and butyric acids from 0.35, 0.67 and 0.85 to 0.21, 0.35 and 0.28/h respectively. The fractional absorption rates of all VFA were reduced (P < 0.05) by an increase in initial rumen volume. The fractional absorption rate of acetic acid was lower (P < 0.05) at an initial concentration of 20 mM than of 50 mM. The fractional absorption rate of propionic acid tended (P < 0.10) to decrease as the level of concentration increased while fractional absorption rate of butyric acid was not affected by butyric acid concentration. These results indicate that relative concentrations of VFA in rumen fluid might not represent relative production rates and that attempts to estimate individual VFA production from substrate digestion must take account of pH and VFA concentration.


1979 ◽  
Vol 41 (3) ◽  
pp. 541-551 ◽  
Author(s):  
E. R. ØRskov ◽  
D. A. Grubb ◽  
J. S. Smith ◽  
A. J. F. Webster ◽  
W. Corrigall

1. Two experiments were conducted with lambs sustained entirely by intragastric infusion of volatile fatty acids (VFA), protein, minerals and vitamins.2. In the first experiment to determine the effects of VFA on nitrogen retention four mixtures of VFA (B, C, D and E) were used containing acetic, propionic and butyric acid in the following molar proportions respectively: 45,45 and 10; 55,35 and 10; 65,25 and 10; 75, 15 and 10.The level of infusion was 836 kJ/live weight0.75 per d and the design was a 4 × 4 Latin square with 14 d periods. There were no significant differences in the N balance between the different mixtures of VFA though mixture B tended to give the highest N retention.3. Thirty-two lambs were used in the second experiment for measurements of heat production in closed- circuit respiration chambers. Six mixtures of VFA were used. These included mixtures B-E from Expt I and in addition two mixtures (A and F) containing acetic, propionic and butyric acid in the following molar proportions respectively: 35, 55 and 10; 85, 5 and 10. The heat production was measured both at 450 and 900 kJ/W0.75 per d, except for mixture F, where it was not possible to achieve a rate of infusion in excess of 675 kJ/W0.75 per d.4. The energy required for maintenance was determined to be 0.45±0.02 MJ/kg live weight0.75 per d regardless of the mixture used.5. The efficiency of utilization for fattening (kf) values for the six mixtures were 0.78, 0.64, 057, 0.61, 0.61 and 0.59 for mixtures A, B, C, D, E and F respectively. Only mixture A was significantly better utilized than the other mixtures. This mixture also gave the most efficient N utilization.6. It is concluded from this evidence that differences in k, for diets normally given to ruminants cannot be attributed to differences in utilization of volatile fatty acids.


1997 ◽  
Vol 24 (1) ◽  
pp. 17-19 ◽  
Author(s):  
M-Y. Shim ◽  
J. L. Starr

Abstract The effect of soil pH on sclerotial germination and pathogenicity of two isolates of Sclerotium rolfsii on peanut was examined. Sclerotial germination for both isolates was greater (P ≤ 0.05) in acidic soil than at alkaline pHs. Similarly, percentage of peanut stems infected by S. rolfsii in greenhouse tests was greater at soil pH 5.6 than at alkaline soil pHs (P ≤ 0.05), but disease did develop at soil pH 8.7 and 9.8. In contrast to a previous in vitro study, these data confirm that sclerotia of S. rolfsii will germinate and initiate disease at soil pH &gt; 7.0.


Sign in / Sign up

Export Citation Format

Share Document