scholarly journals Effect of Antibiotics on the Colonization of Live Attenuated Salmonella Enteritidis Vaccine in Chickens

2021 ◽  
Vol 8 ◽  
Author(s):  
Jiangang Hu ◽  
Chuanyan Che ◽  
Jiakun Zuo ◽  
Xiangpeng Niu ◽  
Zhihao Wang ◽  
...  

Salmonellosis, caused by Salmonella Enteritidis, is a prevalent zoonosis that has serious consequences for human health and the development of the poultry sector. The Salmonella Enteritis live vaccine (Sm24/Rif12/Ssq strain) is used to prevent Salmonella Enteritidis around the world. However, in some parts of the world, poultry flocks are frequently raised under intensive conditions, with significant amounts of antimicrobials to prevent and treat disease and to promote growth. To investigate whether antibiotic use influences the colonization of orally administered Salmonella live vaccines, 240 1-day-old specific pathogen-free chicks were randomly divided into 24 groups of 10 animals for this study. The different groups were treated with different antibiotics, which included ceftiofur, amoxicillin, enrofloxacin, and lincomycin–spectinomycin. Each group was immunized 2, 3, 4, and 5 days after withdrawal, respectively. At 5 days after immunization, the blood, liver, and ceca with contents were collected for the isolation of the Salmonella live vaccine strain. The result showed that no Salmonella vaccine strain was isolated in the blood and liver of the chicks in those groups. The highest number of Salmonella vaccine strains was isolated in the cecum from chicks vaccinated 2 days after ceftiofur withdrawal, and no Salmonella vaccine strain was isolated from the cecum in chicks immunized 3 days after ceftiofur withdrawal. Among the chickens immunized 4 days after the withdrawal of amoxicillin, enrofloxacin, and lincomycin–spectinomycin, the number of Salmonella vaccine colonization in the cecum was the highest, which was higher than that of the chickens immunized at other withdrawal interval (2, 3, and 5 days) groups and was higher than that of the chickens without treatment (P < 0.05). This study provides a reference for the effective use of the Salmonella Enteritidis live vaccine and key antibiotics commonly utilized in the poultry industry.

1990 ◽  
Vol 34 (2) ◽  
pp. 419 ◽  
Author(s):  
Kurt P. Snipes ◽  
Dwight C. Hirsh ◽  
Rick W. Kasten ◽  
Tim E. Carpenter ◽  
David W. Hird ◽  
...  

2014 ◽  
Vol 82 (5) ◽  
pp. 2068-2078 ◽  
Author(s):  
Christopher R. Doyle ◽  
Ji-An Pan ◽  
Patricio Mena ◽  
Wei-Xing Zong ◽  
David G. Thanassi

ABSTRACTFrancisella tularensisis a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of theF. tularensislive vaccine strain (LVS) and demonstrated that a ΔtolCmutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required forF. tularensisto preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolCmutant. These findings support a model wherein the immunomodulatory capacity ofF. tularensisrelies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolCLVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolCmutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection byF. tularensisand highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.


2005 ◽  
Vol 73 (4) ◽  
pp. 2306-2311 ◽  
Author(s):  
Nathalie S. Duckett ◽  
Sofia Olmos ◽  
Douglas M. Durrant ◽  
Dennis W. Metzger

ABSTRACT Francisella tularensis is a gram-negative intracellular bacterium that can induce lethal respiratory infection in humans and rodents. However, little is known about the role of innate or adaptive immunity in protection from respiratory tularemia. In the present study, the role of interleukin-12 (IL-12) in inducing protective immunity in the lungs against intranasal infection of mice with the live vaccine strain (LVS) of F. tularensis was investigated. It was found that gamma interferon (IFN-γ) and IL-12 were strictly required for protection, since mice deficient in IFN-γ, IL-12 p35, or IL-12 p40 all succumbed to LVS doses that were sublethal for wild-type mice. Furthermore, exogenous IL-12 treatment 24 h before intranasal infection with a lethal dose of LVS (10,000 CFU) significantly decreased bacterial loads in the lungs, livers, and spleens of wild-type BALB/c and C57BL/6 mice and allowed the animals to survive infection; such protection was not observed in IFN-γ-deficient mice. The resistance induced by IL-12 to LVS infection was still observed in NK cell-deficient beige mice but not in CD8−/− mice. These results demonstrate that exogenous IL-12 delivered intranasally can prevent respiratory tularemia through a mechanism that is at least partially dependent upon the expression of IFN-γ and CD8 T cells.


2011 ◽  
Vol 80 (3) ◽  
pp. 952-967 ◽  
Author(s):  
Daniel L. Clemens ◽  
Bai-Yu Lee ◽  
Marcus A. Horwitz

We examined the uptake and intracellular trafficking ofF. tularensisLive Vaccine Strain (LVS) and LVS with disruptions ofwbtDEFandwbtIgenes essential for synthesis of the O antigen of lipopolysaccharide. Unlike parental bacteria, O-antigen-deficient LVS is efficiently killed by serum with intact complement but not by serum lacking terminal complement components. Opsonization of O-antigen-deficient LVS in serum lacking terminal complement components allows efficient uptake of these live bacteria by macrophages. In the presence of complement, whereas parentalF. tularensisLVS is internalized within spacious pseudopod loops, mutant LVS is internalized within tightly juxtaposed multiple onion-like layers of pseudopodia. Without complement, both parental and mutant LVSs are internalized within spacious pseudopod loops. Thus, molecules other than O antigen are important in triggering dramatic pseudopod extensions and uptake by spacious pseudopod loops. Following uptake, both parental and mutant LVSs enter compartments that show limited staining for the lysosomal membrane glycoprotein CD63 and little fusion with secondary lysosomes. Subsequently, both parental and mutant LVSs lose their CD63 staining. Whereas the majority of parental LVS escapes into the cytosol by 6 h after uptake, mutant LVS shows a marked lag but does escape by 1 day after uptake. Despite the altered kinetics of phagosome escape, both mutant and parental strains grow to high levels within human macrophages. Thus, the O antigen plays a role in the morphology of uptake in the presence of complement and the kinetics of intracellular growth but is not essential for escape, survival, altered membrane trafficking, or intramacrophage growth.


Sign in / Sign up

Export Citation Format

Share Document