modified live vaccine
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 2)

Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1370
Author(s):  
Wenlong Cai ◽  
Covadonga R. Arias

Vaccines are widely employed in aquaculture to prevent bacterial infections, but their use by the U.S. catfish industry is very limited. One of the main diseases affecting catfish aquaculture is columnaris disease, caused by the bacterial pathogen Flavobacterium columnare. In 2011, a modified-live vaccine against columnaris disease was developed by selecting mutants that were resistant to rifampin. The previous study has suggested that this vaccine is stable, safe, and effective, but the mechanisms that resulted in attenuation remained uncharacterized. To understand the molecular basis for attenuation, a comparative genomic analysis was conducted to identify specific point mutations. The PacBio RS long-read sequencing platform was used to obtain draft genomes of the mutant attenuated strain (Fc1723) and the parent virulent strain (FcB27). Sequence-based genome comparison identified 16 single nucleotide polymorphisms (SNP) unique to the mutant. Genes that contained mutations were involved in rifampin resistance, gliding motility, DNA transcription, toxin secretion, and extracellular protease synthesis. The results also found that the vaccine strain formed biofilm at a significantly lower rate than the parent strain. These observations suggested that the rifampin-resistant phenotype and the associated attenuation of the vaccine strain result from the altered activity of RNA polymerase (RpoB) and possible disrupted protein secretion systems.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1057
Author(s):  
Kasper Pedersen ◽  
Charlotte Sonne Kristensen ◽  
Lise Kirstine Kvisgaard ◽  
Lars Erik Larsen

In recent years, there has been a considerable increase in the use of Modified Live PRRSV Vaccines (MLV) for mass vaccination in Denmark. The potential risks and negative impact of this strategy have been sparsely studied. The aim of this study was to investigate the impact of quarterly sow mass vaccination in two Danish sow herds. The study was performed as an observational prospective cohort of 120 sows in each of two commercial breeding herds in a paired design. Blood samples were taken from sows and oral fluid samples from nursery pigs (four to ten weeks old) before and after vaccination. The presence of PRRSV-1 RNA was measured by real time quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and the level of PRRSV-1 specific antibodies was measured by two different serological assays. PRRS virus was not detected in the sow herds two days before and two weeks after vaccination, but the vaccine strain virus was detected in the nursery pigs. The prevalence of sows without antibodies towards PRRSV-1 went from 6–15% before vaccination to 1–4% after vaccination depending on the serological assay used, despite the fact that they had previously been repeatedly vaccinated. Four sows tested negative for antibodies in both assays after vaccination.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 392
Author(s):  
Julie Eclercy ◽  
Patricia Renson ◽  
Edouard Hirchaud ◽  
Mathieu Andraud ◽  
Véronique Beven ◽  
...  

Modified live vaccines (MLVs) against the porcine reproductive and respiratory syndrome virus (PRRSV) have been regularly associated with safety issues, such as reversion to virulence. In order to characterize the phenotypic and genetic evolution of the PRRSV-1 DV strain from the Porcilis® PRRS MLV after limited passages in pigs, three in vivo experiments were performed. Trial#1 aimed (i) at studying transmission of the vaccine strain from vaccinated to unvaccinated contact pigs. Trial#2 and Trial#3 were designed (ii) to assess the reproducibility of Trial#1, using another vaccine batch, and (iii) to compare the virulence levels of two DV strains isolated from vaccinated (passage one) and diseased contact pigs (passage two) from Trial#1. DV strain isolates from vaccinated and contact pigs from Trial#1 and Trial#2 were submitted to Next-Generation Sequencing (NGS) full-genome sequencing. All contact animals from Trial#1 were infected and showed significantly increased viremia compared to vaccinated pigs, whereas no such change was observed during Trial#2. In Trial#3, viremia and transmission were higher for inoculated pigs with passage two of the DV strain, compared with passage one. In this study, we showed that the re-adaptation of the DV strain to pigs is associated with faster replication and increased transmission of the vaccine strain. Punctually, a decrease of attenuation of the DV vaccine strain associated with clinical signs and increased viremia may occur after limited passages in pigs. Furthermore, we identified three mutations linked to pig re-adaptation and five other mutations as potential virulence determinants.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 664
Author(s):  
Madiha Fatima ◽  
Yuzi Luo ◽  
Li Zhang ◽  
Peng-Ying Wang ◽  
Hao Song ◽  
...  

Classical swine fever (CSF) is a highly contagious disease of swine caused by classical swine fever virus (CSFV). For decades the disease has been controlled in China by a modified live vaccine (C-strain) of genotype 1. The emergent genotype 2 strains have become predominant in China in the past years that are genetically distant from the vaccine strain. Here, we aimed to evaluate the current infectious status of CSF, and for this purpose 24 isolates of CSFV were identified from different areas of China during 2016–2018. Phylogenetic analysis of NS5B, E2 and full genome revealed that the new isolates were clustered into subgenotype 2.1d and 2.1b, while subgenotype 2.1d was predominant. Moreover, E2 and Erns displayed multiple variations in neutralizing epitope regions. Furthermore, the new isolates exhibited capacity to escape C-strain-derived antibody neutralization compared with the Shimen strain (genotype 1). Potential positive selection sites were identified in antigenic regions of E2 and Erns, which are related with antibody binding affinity. Recombination events were predicted in the new isolates with vaccine strains in the E2 gene region. In conclusion, the new isolates showed molecular variations and antigenic alterations, which provide evidence for the emergence of vaccine-escaping mutants and emphasize the need of updated strategies for CSF control.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 180
Author(s):  
Michèle Bergmann ◽  
Monika Freisl ◽  
Katrin Hartmann ◽  
Stephanie Speck ◽  
Uwe Truyen ◽  
...  

(1) Background: No information is available on how dogs with hypothyroidism (HypoT) respond to vaccination. This study measured pre- and post-vaccination anti-canine parvovirus (CPV) antibodies in dogs with HypoT treated with levothyroxine and compared the results to those of healthy dogs. (2) Methods: Six dogs with HypoT and healthy age-matched control dogs (n = 23) were vaccinated against CPV with a modified-live vaccine. Hemagglutination inhibition was used to measure antibodies on days 0, 7, and 28. The comparison of the vaccination response of dogs with HypoT and healthy dogs were performed with univariate analysis. (3) Results: Pre-vaccination antibodies (≥10) were detected in 100% of dogs with HypoT (6/6; 95% CI: 55.7–100) and in 100% of healthy dogs (23/23; 95% CI: 83.1–100.0). A ≥4-fold titer increase was observed in none of the dogs with HypoT and in 4.3% of the healthy dogs (1/23; CI95%: <0.01–22.7). Mild vaccine-associated adverse events (VAAEs) were detected in 33.3% of the dogs with HypoT (2/6; 95% CI: 9.3–70.4) and in 43.5% (10/23; 95% CI: 25.6–63.2) of the healthy dogs. (4) Conclusions: There was neither a significant difference in the dogs’ pre-vaccination antibodies (p = 1.000), or vaccination response (p = 0.735), nor in the occurrence of post-vaccination VAAEs (p = 0.798). The vaccination response in dogs with levothyroxine-treated HypoT seems to be similar to that of healthy dogs.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
A. Lebret ◽  
P. Berton ◽  
V. Normand ◽  
I. Messager ◽  
N. Robert ◽  
...  

AbstractIn the last two decades, in France, Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) stabilization protocols have been implemented using mass vaccination with a modified live vaccine (MLV), herd closure and biosecurity measures. Efficient surveillance for PRRSV is essential for generating evidence of absence of viral replication and transmission in pigs. The use of processing fluid (PF) was first described in 2018 in the United States and was demonstrated to provide a higher herd-level sensitivity compared with blood samples (BS) for PRRSV monitoring. In the meantime, data on vertical transmission of MLV viruses are rare even as it is a major concern. Therefore, veterinarians usually wait for several weeks after a sow mass vaccination before starting a stability monitoring. This clinical study was conducted in a PRRSV-stable commercial 1000-sow breed-to-wean farm. This farm suffered from a PRRS outbreak in January 2018. After implementing a stabilisation protocol, this farm was controlled as stable for more than 9 months before the beginning of the study. PF and BS at weaning were collected in four consecutive batches born after a booster sow mass MLV vaccination. We failed to detect PRRSV by qPCR on PF and BS collected in a positive-stable breeding herd after vaccination with ReproCyc® PRRS EU (Boehringer Ingelheim, Ingelheim, Germany).


Vaccines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Yusmel Sordo-Puga ◽  
Danny Pérez-Pérez ◽  
Carlos Montero-Espinosa ◽  
Aymé Oliva-Cárdenas ◽  
Iliana Sosa-Teste ◽  
...  

E2CD154 is a novel subunit vaccine candidate against classical swine fever virus (CSFV). It contains the E2 envelope protein from CSFV fused to the porcine CD154 molecule formulated in the oil adjuvant MontanideTM ISA50 V2. Previous works evidenced the safety and immunogenicity of this candidate. Here, two other important parameters related to vaccine efficacy were assessed. First, the existence of high maternally derived antibody (MDA) titers in piglets born to sows vaccinated with E2CD154 was demonstrated. These MDA titers remained above 1:200 during the first seven weeks of life. To assess whether the titers interfere with active vaccination, 79 piglets from sows immunized with either E2CD154 or a modified live vaccine were vaccinated with E2CD154 following a 0–21-day biphasic schedule. Animals immunized at either 15, 21, or 33 days of age responded to vaccination by eliciting protective neutralizing antibody (NAb) titers higher than 1:600, with a geometric mean of 1:4335, one week after the booster. Those protective levels of NAb were sustained up to six months of age. No vaccination-related adverse effects were described. As a conclusion, E2CD154 is able to induce protective NAb in piglets with different MDA levels and at different days of age.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 5-6
Author(s):  
Jeff Robe ◽  
Paul A Beck ◽  
Dana Zook ◽  
Marty New ◽  
Earl Ward ◽  
...  

Abstract The Oklahoma Quality Beef Network (OQBN) Vac-45 program was designed to provide health management certification and value-added marketing for cow-calf producers since 2001. The objective of this abstract is to examine trends in health management systems by OQBN participants. Participants chose from one of three options for administering vaccinations: Option 1) branding and weaning, Option 2) 2–6 weeks before weaning and weaning, Option 3) weaning and 14–28 d post weaning. From 2014–2018, 596 participants enrolled 30,452 calves. Preferred vaccine options were: Option 1) 210 participants (35%) and 12,015 calves (37%), Option 2) 96 participants (16%) and 3,016 calves (10%), Option 3) 290 participants (49%) and 15,421 calves (51%). Producer choice of a viral vaccine component included 251 (42%) participants using killed vaccine at least once. A five-yr average of cattle marketed with at least one modified-live vaccine (MLV) exposure was 73% of calves (22,138) and 27% (8,314) were treated with only killed vaccines. In Option 1, 57 (10% of the total) participants used killed vaccines at both times, 33 (6%) used a killed vaccine followed by a MLV at weaning, 120 (20%) used MLV at both times. Option 2, 55 (9%) participants used killed vaccines at both times, 4 (1%) participants used a killed vaccine follow by a MLV at weaning; 37 (6%) used a MLV at both times. Option 3, 114 (19%) participants used killed vaccines at both times, 2 (&lt; 1%) participant used a killed vaccine followed by a MLV, 1 participant used MLV followed by killed vaccine, 173 (29%) participants used MLV at both times. Cattle marketed with killed vaccines have seen an increase in use; 2014 (27%), 2015 (17%), 2016 (27%), 2017 (31%), 2018 (39%). These data show the preferred method of MLV vaccination utilized is a weaning and post-weaning system with an increased use of killed vaccines, which may be due to producer concerns regarding exposure of brood cows to MLV.


2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Shaswath S. Chandrasekar ◽  
Brock Kingstad-Bakke ◽  
Chia-Wei Wu ◽  
M. Suresh ◽  
Adel M. Talaat

ABSTRACT Infectious bronchitis (IB) caused by infectious bronchitis virus (IBV) is currently a major threat to chicken health, with multiple outbreaks being reported in the United States over the past decade. Modified live virus (MLV) vaccines used in the field can persist and provide the genetic material needed for recombination and emergence of novel IBV serotypes. Inactivated and subunit vaccines overcome some of the limitations of MLV with no risk of virulence reversion and emergence of new virulent serotypes. However, these vaccines are weakly immunogenic and poorly protective. There is an urgent need to develop more effective vaccines that can elicit a robust, long-lasting immune response. In this study, we evaluate a novel adjuvant system developed from Quil-A and chitosan (QAC) for the intranasal delivery of nucleic acid immunogens to improve protective efficacy. The QAC adjuvant system forms nanocarriers (<100 nm) that efficiently encapsulate nucleic acid cargo, exhibit sustained release of payload, and can stably transfect cells. Encapsulation of plasmid DNA vaccine expressing IBV nucleocapsid (N) protein by the QAC adjuvant system (pQAC-N) enhanced immunogenicity, as evidenced by robust induction of adaptive humoral and cellular immune responses postvaccination and postchallenge. Birds immunized with pQAC-N showed reduced clinical severity and viral shedding postchallenge on par with protection observed with current commercial vaccines without the associated safety concerns. Presented results indicate that the QAC adjuvant system can offer a safer alternative to the use of live vaccines against avian and other emerging coronaviruses. IMPORTANCE According to 2017 U.S. agriculture statistics, the combined value of production and sales from broilers, eggs, turkeys, and chicks was $42.8 billion. Of this number, broiler sales comprised 67% of the industry value, with the production of >50 billion pounds of chicken meat. The economic success of the poultry industry in the United States hinges on the extensive use of vaccines to control infectious bronchitis virus (IBV) and other poultry pathogens. The majority of vaccines currently licensed for poultry health include both modified live vaccine and inactivated pathogens. Despite their proven efficacy, modified live vaccine constructs take time to produce and could revert to virulence, which limits their safety. The significance of our research stems from the development of a safer and potent alternative mucosal vaccine to replace live vaccines against IBV and other emerging coronaviruses.


Sign in / Sign up

Export Citation Format

Share Document