scholarly journals Thermal Behaviour Analysis of Complex Joints for an Energy Efficient School Building

2021 ◽  
Vol 14 (1) ◽  
pp. 37-43
Author(s):  
Szilárd Karda ◽  
Tamás Nagy-György ◽  
József Boros

Abstract Energy-efficient buildings have received increasing attention in recent times as they represent a direction that promotes the objectives of a sustainable, competitive and decarbonized energy policy. In order to meet the minimum requirements of the nearly zero-energy buildings (nZEB) the thermal characteristics of the envelope play an important role. The aim of the paper is to present and analyse the thermal behaviour of complex joints for an energy efficient school building, for which the formation of thermal bridges has been reduced by applying improved geometrical and technological solutions. Since most of the thermal bridge catalogues did not provide updated details for the studied joints, numerical calculations, as two-dimensional finite elements thermal simulations, were performed to determine thermal transmittance coefficients and the U-value..

Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 491
Author(s):  
Jorge González ◽  
Carlos Alberto Pereira Soares ◽  
Mohammad Najjar ◽  
Assed N. Haddad

Linking Building Information Modelling and Building Energy Modelling methodologies appear as a tool for the energy performance analysis of a dwelling, being able to build the physical model via Autodesk Revit and simulating the energy modeling with its complement Autodesk Insight. A residential two-story house was evaluated in five different locations within distinct climatic zones to reduce its electricity demand. Experimental Design is used as a methodological tool to define the possible arrangement of results emitted via Autodesk Insight that exhibits the minor electric demand, considering three variables: Lighting efficiency, Plug-Load Efficiency, and HVAC systems. The analysis concluded that while the higher the efficiency of lighting and applications, the lower the electric demand. In addition, the type of climate and thermal characteristics of the materials that conform to the building envelope have significant effects on the energetic performance. The adjustment of different energetic measures and its comparison with other climatic zones enable decision-makers to choose the best combination of variables for developing strategies to lower the electric demand towards energy-efficient buildings.


Designs ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 40
Author(s):  
Alessandro Pracucci ◽  
Sara Magnani ◽  
Oscar Casadei

The European Commission has identified the building industry as one of the key sectors to achieve its 2020 strategy to create conditions for smart, sustainable, and inclusive growth. In this frame, the aim of Horizon 2020′s Eensulate project is the development of innovative lightweight and highly insulating energy efficient unitized building façades, suitable for both new and existing buildings. The Eensulate façade module integrates two components developed within the project: Vacuum Insulated Glass (VIG) for architectural purposes, with a U-value of 0.3 W/sqm∙K; a highly insulating foam for automated manufacturing and insulation for the spandrel part. This article presents the Eensulate façade system design simulations and achievements related to VIG integration to solve issues that emerged by the utilization of its innovative components (sealant thermal bridge and getter strips). VIG design and testing have gradually changed the façade module and consequently, façade components have been progressively designed to achieve the expected target of 0.641 W/sqm∙K for thermal transmittance. The results demonstrate that the target can be achieved by aluminum profiles, Ethylene Propylene Diene Monomer (EPDM) thermal bridge, and additional insulating components, obtaining a new product for unitized façades able to reduce energy consumption in buildings with large glass surfaces.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2181-2188 ◽  
Author(s):  
Jolanta Sadauskiene ◽  
Juozas Ramanauskas ◽  
Algimantas Vasylius

During the design of energy-efficient buildings with a ventilated fa?ade systems, the evaluation of point thermal transmittance is complicated. It requires additional theoretical knowledge, special software and skills to use it. Because of that, point thermal transmittance is often ignored in practice. The dependence of point thermal transmittance, which is appearing because of aluminum fixing elements used in the insulated wall with ventilated fa?ade system, from the thermal and geometrical properties of construction layers are analyzed in this paper. Research has shown, that thermal properties of the supporting wall, where fixing element is located, had the biggest influence on the point thermal transmittance. When thermal conductivity of the supporting wall was increasing, as well as a thickness of the insulation layer, a value of thermal bridge was increasing in a non-linear way. For this reason, the thermal transmittance coefficient of all construction could increase up to 35%. When the thickness of the supporting wall and thermal conductivity of the insulation layer was increased, the value of point thermal bridge was decreasing. The tests revealed strong dependency of the point thermal bridge on the thermal conductivity of bearing layer material and the thickness of the bearing layer of wall. For this reason, thermal bridges should receive greater consideration. It is not enough to use the diagrams of typical fasteners that very often do not take into account the exact thickness and thermal characteristics of materials


2014 ◽  
Vol 1057 ◽  
pp. 79-86
Author(s):  
Peter Buday ◽  
Rastislav Ingeli ◽  
Miroslav Čekon

Reduction of energy use in buildings is an important measure to achieve climate change mitigation. It is essential to minimize heat losses when designing and building energy efficient buildings. For an energy-efficient building in a cold climate, a large part of the space heating demand is caused by transmission losses through the building envelope. To achieve this, it is necessary to have processed a detailed design of buildings. Thermal bridges have to be eliminated in the design of buildings. Thermal bridges occur as point ones or linear. One of the specific details that create thermal leakage is located in balcony slabs. The balcony is one of the main reasons of the increased heat loss of buildings. The presence of thermal bridge in constructions of balcony envelopes influences the energy consumption, durability of the building envelopes, and also the thermal comfort of occupants. This paper is focused on advanced analysis of thermal performance of thermal break element applied in balcony slab with parametric correlation to the thermal properties of wall building envelope.


Author(s):  
Yusuf Latief ◽  
Mohammed Ali Berawi ◽  
Leni Supriadi ◽  
Jade Petroceany ◽  
Ayu Herzanita ◽  
...  

Housing development, as part of the economic development must be supported by energy availability in order to obtain a sustainable growth. One of the approaches to support the renewable energy promotions is designing and building energy efficient housing. However, optimal design of energy efficient buildings is facing two conflicting requirements, namely cost effective consideration and minimum environmental impact. The high costs from energy efficient building such as the Near Zero Energy House (nZEH) is due to high price of materials and equipment used, such as solar panel, insulation and other supporting materials. Indonesia is situated at the equator and received sunlight throughout the year. Nonetheless, this potential has not been fully discovered due to the high cost of the solar generated energy technology for housing. Moreover, this technology is not integrated with the main electricity network. Thus, the objective of this study is to identify the design variables for nZEH that suit the tropical climate condition in Indonesia. Experiments and Case Study are used for the study, and the validated design variables for nZEH, which includes building orientation, PV, fenestration, and passive design, will be the basis for optimum nZEH design.


Akustika ◽  
2020 ◽  
pp. 2-7
Author(s):  
Marián Flimel

Energy-efficient buildings utilise the potential of renewable sources, among which heat pumps hold an important position. As this technology has a secondary effect on the environment through its noise immission, locations of outdoor units in the exterior should be subjected to the assessment. The present article deals with the options of placing heat pumps in the exterior and the placement assessment methods. The noise burden identification through the assessment of the time exposure is presented in the example of an in situ measurement.


Sign in / Sign up

Export Citation Format

Share Document