Influence of Thermal Break Element Applied in Balcony Slab on Internal Surface Temperature

2014 ◽  
Vol 1057 ◽  
pp. 79-86
Author(s):  
Peter Buday ◽  
Rastislav Ingeli ◽  
Miroslav Čekon

Reduction of energy use in buildings is an important measure to achieve climate change mitigation. It is essential to minimize heat losses when designing and building energy efficient buildings. For an energy-efficient building in a cold climate, a large part of the space heating demand is caused by transmission losses through the building envelope. To achieve this, it is necessary to have processed a detailed design of buildings. Thermal bridges have to be eliminated in the design of buildings. Thermal bridges occur as point ones or linear. One of the specific details that create thermal leakage is located in balcony slabs. The balcony is one of the main reasons of the increased heat loss of buildings. The presence of thermal bridge in constructions of balcony envelopes influences the energy consumption, durability of the building envelopes, and also the thermal comfort of occupants. This paper is focused on advanced analysis of thermal performance of thermal break element applied in balcony slab with parametric correlation to the thermal properties of wall building envelope.

2016 ◽  
Vol 820 ◽  
pp. 139-145
Author(s):  
Rastislav Ingeli ◽  
Jozef Podhorec ◽  
Miroslav Čekon

Energy need for heating is depend on the heat loss of the builing. It is essential to minimize heat losses when designing and building energy efficient buildings. For an energy-efficient building in a cold climate, a large part of the space heating demand is caused by transmission losses through the building envelope. The low-energy buildings are enevelope construction with high thermal resistance. The impact of thermal bridges was studied by comparative calculations for a case study building with different amounts of insulation. In the low-energy buildings are envelope construction with high thermal resistance. When more insulation is used the relative impact of thermal bridges increases. In these buildings is necessary to specify each thermal bridges. This thesis deals with the influence of thermal bridges on energy need for heating in low energy wooden houses.


2020 ◽  
Vol 64 (2) ◽  
pp. 145-149
Author(s):  
Rastislav Ingeli ◽  
Peter Buday

Reduction of energy use in buildings is an important measure to achieve climate changes of mitigation. It is essential to minimize heat losses when designing energy efficient buildings. For energy efficient building in a cold climate, a large part of the space heating demand is caused by transmission losses through the building envelope. In compliance with the today's trend of designing sustainable and energy-saving architecture, it is necessary firstly to solve the factors influencing the energy balance. This year the subsidy for houses has been valued at € 8,000. The condition is that the building is classified in the energy class A0 according to the Energy Performance Act. Energy class A0 characterizes nearly zero energy buildings. The main concern is for the public to become interested in such buildings. The subsidy is designed to reward and promote those buildings that their heat and technical characteristics and modern technical equipment that meet energy class. In addition to a good plan to raise the profile of such buildings, there has been a lot of speculation to help make buildings in energy class A0. They are mainly owners of family houses where there is no gasification and are forced to have electricity as a source of heat and hot water. Electricity has a high primary energy factor, which means that buildings do not have to be approved.


Currently buildings in the world become the biggest energy consumers. Energy efficient buildings must be built to reduce energy use by buildings. Building standards is needed to achieve this goal. One of the building standards is based on Overall Thermal Transfer Value (OTTV). The OTTV is a value indicating the average rate of heat transfer into a building through the building envelope. The first country in Asia to adopt the standard is Singapore. It is then followed by other countries in South Asia region including Indonesia. The current Indonesian standard on OTTV is Envelope Energy Conservation in Buildings, SNI 6389: 2011. Parametric analysis on OTTV formula based on Indonesian standard shows that the parameter having the biggest and the smallest impact on OTTV value is window-towall ratio and wall absorptance, respectively. The experiment also reveals that different building orientations will cause only small change in OTTV value.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 491
Author(s):  
Jorge González ◽  
Carlos Alberto Pereira Soares ◽  
Mohammad Najjar ◽  
Assed N. Haddad

Linking Building Information Modelling and Building Energy Modelling methodologies appear as a tool for the energy performance analysis of a dwelling, being able to build the physical model via Autodesk Revit and simulating the energy modeling with its complement Autodesk Insight. A residential two-story house was evaluated in five different locations within distinct climatic zones to reduce its electricity demand. Experimental Design is used as a methodological tool to define the possible arrangement of results emitted via Autodesk Insight that exhibits the minor electric demand, considering three variables: Lighting efficiency, Plug-Load Efficiency, and HVAC systems. The analysis concluded that while the higher the efficiency of lighting and applications, the lower the electric demand. In addition, the type of climate and thermal characteristics of the materials that conform to the building envelope have significant effects on the energetic performance. The adjustment of different energetic measures and its comparison with other climatic zones enable decision-makers to choose the best combination of variables for developing strategies to lower the electric demand towards energy-efficient buildings.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6178
Author(s):  
Pierryves Padey ◽  
Kyriaki Goulouti ◽  
Guy Wagner ◽  
Blaise Périsset ◽  
Sébastien Lasvaux

The performance gap, defined as the difference between the measured and the calculated performance of energy-efficient buildings, has long been identified as a major issue in the building domain. The present study aims to better understand the performance gap in high-energy performance buildings in Switzerland, in an ex-post evaluation. For an energy-efficient building, the measured heating demand, collected through a four-year measurement campaign was compared to the calculated one and the results showed that the latter underestimates the real heating demand by a factor of two. As a way to reduce the performance gap, a probabilistic framework was proposed so that the different uncertainties of the model could be considered. By comparing the mean of the probabilistic heating demand to the measured one, it was shown that the performance gap was between 20–30% for the examined period. Through a sensitivity analysis, the active air flow and the shading factor were identified as the most influential parameters on the uncertainty of the heating demand, meaning that their wrong adjustment, in reality, or in the simulations, would increase the performance gap.


2021 ◽  
Vol 14 (1) ◽  
pp. 37-43
Author(s):  
Szilárd Karda ◽  
Tamás Nagy-György ◽  
József Boros

Abstract Energy-efficient buildings have received increasing attention in recent times as they represent a direction that promotes the objectives of a sustainable, competitive and decarbonized energy policy. In order to meet the minimum requirements of the nearly zero-energy buildings (nZEB) the thermal characteristics of the envelope play an important role. The aim of the paper is to present and analyse the thermal behaviour of complex joints for an energy efficient school building, for which the formation of thermal bridges has been reduced by applying improved geometrical and technological solutions. Since most of the thermal bridge catalogues did not provide updated details for the studied joints, numerical calculations, as two-dimensional finite elements thermal simulations, were performed to determine thermal transmittance coefficients and the U-value..


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1480 ◽  
Author(s):  
Qadeer Ali ◽  
Muhammad Jamaluddin Thaheem ◽  
Fahim Ullah ◽  
Samad M. E. Sepasgozar

Rising demand and limited production of electricity are instrumental in spreading the awareness of cautious energy use, leading to the global demand for energy-efficient buildings. This compels the construction industry to smartly design and effectively construct these buildings to ensure energy performance as per design expectations. However, the research tells a different tale: energy-efficient buildings have performance issues. Among several reasons behind the energy performance gap, occupant behavior is critical. The occupant behavior is dynamic and changes over time under formal and informal influences, but the traditional energy simulation programs assume it as static throughout the occupancy. Effective behavioral interventions can lead to optimized energy use. To find out the energy-saving potential based on simulated modified behavior, this study gathers primary building and occupant data from three energy-efficient office buildings in major cities of Pakistan and categorizes the occupants into high, medium, and low energy consumers. Additionally, agent-based modeling simulates the change in occupant behavior under the direct and indirect interventions over a three-year period. Finally, energy savings are quantified to highlight a 25.4% potential over the simulation period. This is a unique attempt at quantifying the potential impact on energy usage due to behavior modification which will help facility managers to plan and execute necessary interventions and software experts to develop effective tools to model the dynamic usage behavior. This will also help policymakers in devising subtle but effective behavior training strategies to reduce energy usage. Such behavioral retrofitting comes at a much lower cost than the physical or technological retrofit options to achieve the same purpose and this study establishes the foundation for it.


Designs ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 40
Author(s):  
Alessandro Pracucci ◽  
Sara Magnani ◽  
Oscar Casadei

The European Commission has identified the building industry as one of the key sectors to achieve its 2020 strategy to create conditions for smart, sustainable, and inclusive growth. In this frame, the aim of Horizon 2020′s Eensulate project is the development of innovative lightweight and highly insulating energy efficient unitized building façades, suitable for both new and existing buildings. The Eensulate façade module integrates two components developed within the project: Vacuum Insulated Glass (VIG) for architectural purposes, with a U-value of 0.3 W/sqm∙K; a highly insulating foam for automated manufacturing and insulation for the spandrel part. This article presents the Eensulate façade system design simulations and achievements related to VIG integration to solve issues that emerged by the utilization of its innovative components (sealant thermal bridge and getter strips). VIG design and testing have gradually changed the façade module and consequently, façade components have been progressively designed to achieve the expected target of 0.641 W/sqm∙K for thermal transmittance. The results demonstrate that the target can be achieved by aluminum profiles, Ethylene Propylene Diene Monomer (EPDM) thermal bridge, and additional insulating components, obtaining a new product for unitized façades able to reduce energy consumption in buildings with large glass surfaces.


2020 ◽  
Vol 307 ◽  
pp. 01022
Author(s):  
Gitanjali Thakur ◽  
Mohamad Asalam ◽  
Mohammed El Ganaoui

One of the major environmental threat in the world today is the increased production of plastic and its usage. The inept plastic waste management system with regard to its recycling and energy recovery in the developing countries creates a global threat as a major land and water body pollutant. However, its durability, thermal properties, and chemical resistance make plastics an alternate choice as a building material. This study investigates the use of plastic in concrete mixture with an objective to improve the thermal performance of the building. The shredded plastic fibers from plastic bottles (polyethylene terephthalate, PET) were used as a partial weight replacement (2.5%, 5%, and 7.5%) of coarse aggregate in concrete blocks. The cubes were cast using the Indian standards (IS 456) and the essential tests were performed. Additionally, experiments were designed to investigate the change in the thermal conductivity of the concrete block due to the varying amount of plastic. It was found that the use of PETs affected the compressive strength and also decreased the thermal conductivity of the concrete blocks. The experimental results suggest that PETs can be used in the construction of energy-efficient building to handle the environmental concerns because of its abundance.


Sign in / Sign up

Export Citation Format

Share Document