scholarly journals Kalman-Filter-Based Tension Control Design for Industrial Roll-to-Roll System

Algorithms ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 86 ◽  
Author(s):  
Hyeongjin Hwang ◽  
Jehwon Lee ◽  
Sangjune Eum ◽  
Kanghyun Nam

This paper presents a robust and precise tension control method for a roll-to-roll (R2R) system. In R2R processing, robust and precise tension control is very important because improper web tension control leads to deterioration in the quality of web material. However, tension control is not easy because the R2R system has a model variation in which the inertia of the web in roll form is changed and external disturbances caused by web slip and crumpled web. Therefore, a disturbance observer (DOB) was proposed to achieve robustness against model variations and external disturbances. DOB is a robust control method widely used in various fields because of its simple structure and excellent performance. Moreover, the web passes through various process steps to achieve the finished product in the R2R process. Particularly, it is important to track the tension when magnitude of the tension varies during process. Feedforward (FF) controller was applied to minimize the tracking error in the transient section where tension changes. Moreover, the signal processing of a sensor using the Kalman filter (KF) in the R2R system greatly improved control performance. Finally, the effectiveness of the proposed control scheme is discussed using experimental results.

2010 ◽  
Vol 33 ◽  
pp. 101-104
Author(s):  
D.X. Chen ◽  
G. Wang

Cerebella Model Articulation Controller (CMAC) is considered as local association and generalization neural network. Parametric CMAC (P-CMAC) is a modification to the original CMAC. The introduction of continuous activation function applied in the input space can overcome the binary behavior of the original CMAC. Takagi-Sugeno(TS) type fuzzy inference is embedded in the internal mapping to improve the approximation accuracy. Hybrid control scheme, which combines P-CMAC neural network and traditional PID controller, is proposed in the paper. The output of P-CMAC network dominates the overall control signal applied to the plant, while the traditional PID controller serves as compensator for reducing tracking error. The application of hybrid control scheme to filament tension control is illustrated. The experimental results have shown the effectiveness and accuracy improvement of the control scheme.


Author(s):  
Youwei Lu ◽  
Prabhakar R. Pagilla

In this paper we develop a model-based nonlinear tension control scheme for transport of flexible materials (webs) through heating processes. Heat transfer processes are widely employed in Roll-to-Roll (R2R) process machines that are used to perform processing operations on a moving web on rollers. Heat transfer processes induce thermal expansion/contraction of the flexible material during transport. Because web strain and elastic modulus are functions of temperature distribution in the web, web tension resulting from elastic strain is affected by heating/cooling of the web. Based on a web tension governing equation that includes both elastic and thermal effects, a nonlinear tension control scheme is developed for control of tension in each tension zone of an R2R system. The control scheme is implemented on an R2R experimental platform containing two heat transfer rollers, one for heating the web and one for subsequently cooling the web prior to winding of the web. Experimental results are presented and discussed.


Author(s):  
Chung Hwan Kim ◽  
Ha-Il You ◽  
Seung-Hyun Lee

The manufacture of printed electronics by roll-to-roll printing machine requires more accurate register performance than conventional media printing technology. Moreover, high drying temperature and long drying time to sinter the inks can induce the substantial changes in the length of the substrate and consequently register errors. Among the roll-to-roll printing methods, the gravure one, despite its relatively fast productivity and fine-line printing capacity, has difficulty in achieving the required register specifications for printed electronics because of the dependence of the register control on web dynamics. This study proposes a roll-to-roll gravure-offset printing equipment, including the register measurement system designed to enhance register performance and the related register control method for the application of printed electronics. Each cylinder constituting the printing unit is driven independently by an individual servomotor. Moreover, the printing patterns of the plate cylinder can move in the axial direction by position control, as well as in the web transport direction by a phase shift of the plate cylinder, without affecting the dynamics of the web. The time difference between the measurement and the actual control action is considered and modeled. The register measurement system, including selections of sensors and marks is also proposed to consider the effect of the time difference. The simulation results and the experiments of the register control are shown to verify the effect of the time difference on the control performances. It is found that a proper estimation of time difference should be obtained in order to guarantee more accurate and stable control performances.


Author(s):  
Chems Eddine Boudjedir ◽  
Djamel Boukhetala

In this article, an adaptive robust iterative learning control is developed to solve the trajectory tracking problem of a parallel Delta robot performing repetitive tasks and subjected to external disturbances. The proposed control scheme is composed of an adaptive proportional–derivative controller to increase the convergence rate, a proportional–derivative-type iterative learning control to enhance the tracking performances through the repetitive trajectory as well as a robust term to compensate the repetitive and nonrepetitive disturbances. The practical assumption of alignment condition is introduced instead of the classical assumption of resetting conditions. The asymptotic convergence is proved using Lyaponuv analysis, and it is shown that the tracking error decreases through the iterations. Simulation and experiments are performed on a Delta robot to demonstrate the effectiveness and the superiority of the proposed controller over the traditional iterative learning control.


Author(s):  
Mansour Karkoub ◽  
Tzu Sung Wu

In this paper, the design problem of delayed output feedback control scheme using two-layer interval fuzzy observers for a class of nonlinear systems with state and output delays is investigated. The Takagi-Sugeno type fuzzy linear model with an on-line update law is used to approximate the nonlinear system. Based on the fuzzy model, a two-layer interval fuzzy observer is used to reconstruct the system states according to equal interval output time delay slices. Subsequently, a delayed output feedback adaptive fuzzy controller is developed to override the nonlinearities, time delays, and external disturbances such that the H∞ tracking performance is achieved. The linguistic information is developped by setting the membership functions of the fuzzy logic system and the adaptation parameters to estimate the model uncertainties directly for using linear analytical results instead of estimating nonlinear system functions. The filtered tracking error dynamics are designed to satisfy the Strictly Positive Realness (SPR) condition. Based on the Lyapunov stability criterion and linear matrix inequalities (LMIs), some sufficient conditions are derived so that all states of the system are uniformly ultimately bounded and the effect of the external disturbances on the tracking error can be attenuated to any prescribed level and consequently an H∞ tracking control is achieved. Finally, a numerical example of a two-link robot manipulator is given to illustrate the effectiveness of the proposed control scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Mingyu Fu ◽  
Taiqi Wang ◽  
Chenglong Wang

This paper considers the problem of constrained path following control for an underactuated hovercraft subject to parametric uncertainties and external disturbances. A four-degree-of-freedom hovercraft model with unknown curve-fitted coefficients is first rewritten into a parameterized form. By introducing a barrier Lyapunov function into the line-of-sight guidance, the specific transient tracking performance in terms of position error is guaranteed. A novel constrained yaw rate controller is proposed to ensure time-varying yaw rate constraint satisfaction, in which the yaw rate barrier is required to vary with the speed of the hovercraft. Moreover, a command filter is incorporated into the control design to generate the desired virtual controls and its time derivatives. Theoretical analyses show that, under the proposed controller, the position tracking error constraints and the yaw rate constraint can be strictly guaranteed. Finally, numerical simulations illustrate the effectiveness and advantages of the proposed control scheme.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Jinzhu Peng ◽  
Zeqi Yang ◽  
Tianlei Ma

In this paper, an adaptive Jacobian and neural network based position/force tracking impedance control scheme is proposed for controlling robotic systems with uncertainties and external disturbances. To achieve precise force control performance indirectly by using the position tracking, the control scheme is divided into two parts: the outer-loop force impedance control and the inner-loop position tracking control. In the outer-loop, an improved impedance controller, which combines the traditional impedance relationship with the PID-like scheme, is designed to eliminate the force tracking error quickly and to reduce the force overshoot effectively. In this way, the satisfied force tracking performance can be achieved when the manipulator contacts with environment. In the inner-loop, an adaptive Jacobian method is proposed to estimate the velocities and interaction torques of the end-effector due to the system kinematical uncertainties, and the system dynamical uncertainties and the uncertain term of adaptive Jacobian are compensated by an adaptive radial basis function neural network (RBFNN). Then, a robust term is designed to compensate the external disturbances and the approximation errors of RBFNN. In this way, the command position trajectories generated from the outer-loop force impedance controller can be then tracked so that the contact force tracking performance can be achieved indirectly in the forced direction. Based on the Lyapunov stability theorem, it is proved that all the signals in closed-loop system are bounded and the position and velocity errors are asymptotic convergence to zero. Finally, the validity of the control scheme is shown by computer simulation on a two-link robotic manipulator.


2021 ◽  
Vol 6 (1) ◽  
pp. 015005
Author(s):  
Jaehyeong Jeong ◽  
Anton Nailevich Gafurov ◽  
Pyoungwon Park ◽  
Inyoung Kim ◽  
Hyun-Chang Kim ◽  
...  

2018 ◽  
Vol 108 (07-08) ◽  
pp. 519-524
Author(s):  
H. Weinmann ◽  
F. Lang ◽  
J. Hofmann ◽  
J. Fleischer

Viele Maschinen- und Materialparameter sind für die Qualität eines Elektroden-Einzelblattes verantwortlich. Relevant für Vereinzelung und Stapelbildung ist etwa die Bahnzugkraft, mit der die Elektrodenbahn während des Stanzvorgangs beaufschlagt wird. Diese wurde in der Versuchsanlage des wbk Institut für Produktionstechnik regelbar ausgeführt, um Zusammenhänge bei der Einzelblattstapelbildung zu untersuchen. Dieser Artikel stellt Auswahl und Funktion sowie die Integration der Lösung in die Versuchsanlage und die Auswirkung verschiedener Bahnzugkräfte auf die Maßhaltigkeit der gestanzten Einzelblätter vor.   The quality of an electrode single-sheet is affected by a multitude of machine and material parameters, such as the web tension force for separating and stacking applied to the electrode web during die cutting. As an adjustable force it was analyzed in a demonstrator at the wbk Institute of Production Science to identify interdependencies during single-sheet-stacking. This article presents the selection, function and integration of the solution into a demonstrator and how different web tension forces affect the dimensional accuracy of die-cut sheets.


2016 ◽  
Vol 12 (08) ◽  
pp. 19
Author(s):  
Yong Jin ◽  
Jian Cai ◽  
Huan Dai ◽  
Kaijian Xia ◽  
Ping Xu

This paper proposed the lightweight QoE driven adaptive invulnerability wireless communication control method, including the wireless communication terminal equipment with invulnerability antenna. According to the quality of wireless network channel quality, the lightweight QoE driven scheme was developed. According to user needs, the quality of the network, survivable ability of wireless communication terminal and wireless communication survivability requirements, we proposed three matching rules by considering the wireless hop number, data size and life cycle. The experiments demonstrated that the proposed scheme can optimize wireless communication terminal equipment and wireless opportunistic communication network construction, guarantee the user experience quality and improve wireless communication network survivability.


Sign in / Sign up

Export Citation Format

Share Document