scholarly journals SVSL: A Human Activity Recognition Method Using Soft-Voting and Self-Learning

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 245
Author(s):  
Aiiad Albeshri

Many smart city and society applications such as smart health (elderly care, medical applications), smart surveillance, sports, and robotics require the recognition of user activities, an important class of problems known as human activity recognition (HAR). Several issues have hindered progress in HAR research, particularly due to the emergence of fog and edge computing, which brings many new opportunities (a low latency, dynamic and real-time decision making, etc.) but comes with its challenges. This paper focuses on addressing two important research gaps in HAR research: (i) improving the HAR prediction accuracy and (ii) managing the frequent changes in the environment and data related to user activities. To address this, we propose an HAR method based on Soft-Voting and Self-Learning (SVSL). SVSL uses two strategies. First, to enhance accuracy, it combines the capabilities of Deep Learning (DL), Generalized Linear Model (GLM), Random Forest (RF), and AdaBoost classifiers using soft-voting. Second, to classify the most challenging data instances, the SVSL method is equipped with a self-training mechanism that generates training data and retrains itself. We investigate the performance of our proposed SVSL method using two publicly available datasets on six human activities related to lying, sitting, and walking positions. The first dataset consists of 562 features and the second dataset consists of five features. The data are collected using the accelerometer and gyroscope smartphone sensors. The results show that the proposed method provides 6.26%, 1.75%, 1.51%, and 4.40% better prediction accuracy (average over the two datasets) compared to GLM, DL, RF, and AdaBoost, respectively. We also analyze and compare the class-wise performance of the SVSL methods with that of DL, GLM, RF, and AdaBoost.

Author(s):  
Marcin D. Bugdol ◽  
Andrzej W. Mitas ◽  
Marcin Grzegorzek ◽  
Robert Meyer ◽  
Christoph Wilhelm

2020 ◽  
Vol 79 (41-42) ◽  
pp. 31663-31690
Author(s):  
Debadyuti Mukherjee ◽  
Riktim Mondal ◽  
Pawan Kumar Singh ◽  
Ram Sarkar ◽  
Debotosh Bhattacharjee

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 317 ◽  
Author(s):  
Nadeem Ahmed ◽  
Jahir Ibna Rafiq ◽  
Md Rashedul Islam

Human activity recognition (HAR) techniques are playing a significant role in monitoring the daily activities of human life such as elderly care, investigation activities, healthcare, sports, and smart homes. Smartphones incorporated with varieties of motion sensors like accelerometers and gyroscopes are widely used inertial sensors that can identify different physical conditions of human. In recent research, many works have been done regarding human activity recognition. Sensor data of smartphone produces high dimensional feature vectors for identifying human activities. However, all the vectors are not contributing equally for identification process. Including all feature vectors create a phenomenon known as ‘curse of dimensionality’. This research has proposed a hybrid method feature selection process, which includes a filter and wrapper method. The process uses a sequential floating forward search (SFFS) to extract desired features for better activity recognition. Features are then fed to a multiclass support vector machine (SVM) to create nonlinear classifiers by adopting the kernel trick for training and testing purpose. We validated our model with a benchmark dataset. Our proposed system works efficiently with limited hardware resource and provides satisfactory activity identification.


2021 ◽  
Vol 25 (2) ◽  
pp. 38-42
Author(s):  
Hyeokhyen Kwon ◽  
Catherine Tong ◽  
Harish Haresamudram ◽  
Yan Gao ◽  
Gregory D. Abowd ◽  
...  

Today's smartphones and wearable devices come equipped with an array of inertial sensors, along with IMU-based Human Activity Recognition models to monitor everyday activities. However, such models rely on large amounts of annotated training data, which require considerable time and effort for collection. One has to recruit human subjects, define clear protocols for the subjects to follow, and manually annotate the collected data, along with the administrative work that goes into organizing such a recording.


Sign in / Sign up

Export Citation Format

Share Document