scholarly journals Modeling and Analysis in Trajectory Tracking Control for Wheeled Mobile Robots with Wheel Skidding and Slipping: Disturbance Rejection Perspective

Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 222
Author(s):  
Xiaoshan Gao ◽  
Liang Yan ◽  
Chris Gerada

Wheeled mobile robot (WMR) is usually applicable for executing an operational task around complicated environment; skidding and slipping phenomena unavoidably appear during the motion, which thus can compromise the accomplishment of the task. This paper investigates the trajectory tracking control problem of WMRs via disturbance rejection in the presence of wheel skidding and slipping phenomena. The kinematic and dynamic models with the perturbed nonholonomic constraints are established. The trajectory tracking control scheme at the dynamic level is designed so that the mobile robot system can track the virtual velocity asymptotically, and counteract the perturbation caused by the unknown skidding and slipping of wheels. Both simulation and experimental works are conducted, and the results prove the performance of the proposed control scheme is effective in terms of tracking precision and disturbance attenuation.

2013 ◽  
Vol 373-375 ◽  
pp. 231-237 ◽  
Author(s):  
Qiang Wang ◽  
Guang Tong ◽  
Xin Xing

In this paper, a new robust trajectory tracking control scheme for wheeled mobile robots without velocity measurement is proposed. In the proposed controller, the velocity observer is used to estimate the velocity of wheeled mobile robot. The dynamics of wheeled mobile robot is considered to develop the controller. The proposed controller has the following features: i) The proposed controller has good robustness performance; ii) It is easy to improve tracking performance by setting only one design parameters.


2018 ◽  
Vol 26 (4) ◽  
pp. 292-306 ◽  
Author(s):  
Ameer L. Saleh ◽  
Maab A. Hussain ◽  
Sahar M. Klim

This paper present an optimal Fractional Order PID (FOPID) controller based on Particle Swarm Optimization (PSO) for controlling the trajectory tracking of Wheeled Mobile Robot(WMR).The issue of trajectory tracking with given a desired reference velocity is minimized to get the distance and deviation angle equal to zero, to realize the objective of trajectory tracking a two FOPID controllers are used for velocity control and azimuth control to implement the trajectory tracking control. A path planning and path tracking methodologies are used to give different desired tracking trajectories.  PSO algorithm is using to find the optimal parameters of FOPID controllers. The kinematic and dynamic models of wheeled mobile robot for desired trajectory tracking with PSO algorithm are simulated in Simulink-Matlab. Simulation results show that the optimal FOPID controllers are more effective and has better dynamic performance than the conventional methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Haiqiang Zhang ◽  
Hairong Fang ◽  
Dan Zhang ◽  
Qi Zou ◽  
Xueling Luo

Parallel mechanisms with redundant actuation are attracting numerous scholars’ research interest due to their inherent advantages. In this paper, an efficient trajectory tracking control scheme for the new redundantly actuated parallel mechanism by integrating force/position hybrid control with the combination of inertia feed-forward control and back propagation (BP) neural network PID control is proposed. The dynamic models including the joint space and task space are formulated explicitly in efficient and compact form by means of the principle of virtual work and d’Alembert formulations. The force/position hybrid control is implemented to perform trajectory tracking and optimize the driving force configuration in MATLAB/Simulink environment, before being applied to an actual parallel mechanism. The illustrative simulation results demonstrate that the force/position hybrid control scheme is available to provide good trajectory tracking performance. Simultaneously, the feasibility of the proposed control scheme is verified by comparison analysis with the aforementioned conventional control method.


2019 ◽  
Vol 24 (4) ◽  
Author(s):  
Yong Zhang ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Xinghui Zhang

This paper proposes a sliding mode active disturbance rejection control scheme to deal with trajectory tracking control problems for the quadrotor unmanned aerial vehicle (UAV). Firstly, the differential signal of the reference trajectory can be obtained directly by using the tracking differentiator (TD), then the design processes of the controller can be simplified. Secondly, the estimated values of the UAV's velocities, angular velocities, total disturbance can be acquired by using extended state observer (ESO), and the total disturbance of the system can be compensated in the controller in real time, then the robustness and anti-interference capability of the system can be improved. Finally, the sliding mode controller based on TD and ESO is designed, the stability of the closed-loop system is proved by Lyapunov method. Simulation results show that the control scheme proposed in this paper can make the quadrotor track the desired trajectory quickly and accurately.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hua Cen ◽  
Bhupesh Kumar Singh

Several research studies are conducted based on the control of wheeled mobile robots. Nonholonomy constraints associated with wheeled mobile robots have encouraged the development of highly nonlinear control techniques. Nonholonomic wheeled mobile robot systems might be exposed to numerous payloads as per the application requirements. This can affect statically or dynamically the complete system mass, inertia, the location of the center of mass, and additional hardware constraints. Due to the nonholonomic and motion limited properties of wheeled mobile robots, the precision of trajectory tracking control is poor. The nonholonomic wheeled mobile robot tracking system is therefore being explored. The kinematic model and sliding mode control model are analyzed, and the trajectory tracking control of the robot is carried out using an enhanced variable structure based on sliding mode. The shear and sliding mode controls are designed, and the control stability is reviewed to control the trajectory of a nonholonomic wheeled mobile robot. The simulation outcomes show that the projected trajectory track control technique is able to improve the mobile robot’s control, the error of a pose is small, and the linear velocity and angular speed can be controlled. Take the linear and angular velocity as the predicted trajectory.


2021 ◽  
pp. 107754632199918
Author(s):  
Rongrong Yu ◽  
Shuhui Ding ◽  
Heqiang Tian ◽  
Ye-Hwa Chen

The dynamic modeling and trajectory tracking control of a mobile robot is handled by a hierarchical constraint approach in this study. When the wheeled mobile robot with complex generalized coordinates has structural constraints and motion constraints, the number of constraints is large and the properties of them are different. Therefore, it is difficult to get the dynamic model and trajectory tracking control force of the wheeled mobile robot at the same time. To solve the aforementioned problem, a creative hierarchical constraint approach based on the Udwadia–Kalaba theory is proposed. In this approach, constraints are classified into two levels, structural constraints are the first level and motion constraints are the second level. In the second level constraint, arbitrary initial conditions may cause the trajectory to diverge. Thus, we propose the asymptotic convergence criterion to deal with it. Then, the analytical dynamic equation and trajectory tracking control force of the wheeled mobile robot can be obtained simultaneously. To verify the effectiveness and accuracy of this methodology, a numerical simulation of a three-wheeled mobile robot is carried out.


Sign in / Sign up

Export Citation Format

Share Document