scholarly journals Multiparameter Optimization Framework of Cyberphysical Systems: A Case Study on Energy Saving of the Automotive Engine

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 330
Author(s):  
Youding Sun ◽  
Zhongpan Zhu ◽  
Aimin Du ◽  
Xinwen Chen

Multiparameter optimization of complex electromechanical systems in a physical space is a challenging task. CPS (Cyberphysical system) technology can speed up the solution of the problem based on data interaction and collaborative optimization of physical space and cyberspace. This paper proposed a general multiparameter optimization framework by combining physical process simulation and clustering genetic algorithm for the CPS application. The utility of this approach is demonstrated in the instance of automobile engine energy-saving in this paper. A 1.8-L turbocharged GDI (gasoline direct injection) engine model was established and calibrated according to the test data and physical entity. A joint simulation program combining CGA (Clustering Genetic Algorithm) with the GDI engine simulation model was set up for the engine multiparameter optimization and performance prediction in cyberspace; then, the influential mechanism of multiple factors on engine energy-saving optimization was analyzed at 2000 RPM (Revolutions Per Minute) working condition. A multiparameter optimization with clustering genetic algorithm was introduced for multiparameter optimization among physical and digital data. The trade-off between fuel efficiency, dynamic performance, and knock risk was discussed. The results demonstrated the effectiveness of the proposed method and that it can contribute to develop a novel automotive engine control strategy in the future.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xiangmin Guan ◽  
Xuejun Zhang ◽  
Yanbo Zhu ◽  
Dengfeng Sun ◽  
Jiaxing Lei

Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology.


Author(s):  
Santosh Tiwari ◽  
Joshua Summers ◽  
Georges Fadel

A novel approach using a genetic algorithm is presented for extracting globally satisfycing (Pareto optimal) solutions from a morphological chart where the evaluation and combination of “means to sub-functions” is modeled as a combinatorial multi-objective optimization problem. A fast and robust genetic algorithm is developed to solve the resulting optimization problem. Customized crossover and mutation operators specifically tailored to solve the combinatorial optimization problem are discussed. A proof-of-concept simulation on a practical design problem is presented. The described genetic algorithm incorporates features to prevent redundant evaluation of identical solutions and a method for handling of the compatibility matrix (feasible/infeasible combinations) and addressing desirable/undesirable combinations. The proposed approach is limited by its reliance on the quantifiable metrics for evaluating the objectives and the existence of a mathematical representation of the combined solutions. The optimization framework is designed to be a scalable and flexible procedure which can be easily modified to accommodate a wide variety of design methods that are based on the morphological chart.


Author(s):  
Xiaoyu Gu ◽  
John E. Renaud ◽  
Leah M. Ashe ◽  
Stephen M. Batill ◽  
Amarjit S. Budhiraja ◽  
...  

Abstract In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg (1996a, 1998) is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming the Hazelrigg framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Hong Zhang ◽  
Guangchen Bai ◽  
Lukai Song

To improve the accuracy and efficiency of multiobjective design optimization for a multicomponent system with complex nonuniform loads, an efficient surrogate model (the decomposed collaborative optimized Kriging model, DCOKM) and an accurate optimal algorithm (the dynamic multiobjective genetic algorithm, DMOGA) are presented in this study. Furthermore, by combining DCOKM and DMOGA, the corresponding multiobjective design optimization framework for the multicomponent system is developed. The multiobjective optimization design of the carrier roller system is considered as a study case to verify the developed approach with respect to multidirectional nonuniform loads. We find that the total standard deviation of three carrier rollers is reduced by 92%, where the loading distribution is more uniform after optimization. This study then compares surrogate models (response surface model, Kriging model, OKM, and DCOKM) and optimal algorithms (neighbourhood cultivation genetic algorithm, nondominated sorting genetic algorithm, archive microgenetic algorithm, and DMOGA). The comparison results demonstrate that the proposed multiobjective design optimization framework is demonstrated to hold advantages in efficiency and accuracy for multiobjective optimization.


Sign in / Sign up

Export Citation Format

Share Document