scholarly journals A Simulation-Based Performance Analysis Tool for Aircraft Design Workflows

Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 155
Author(s):  
Agostino De Marco ◽  
Vittorio Trifari ◽  
Fabrizio Nicolosi ◽  
Manuela Ruocco

A simulation-based approach for take-off and landing performance assessments is presented in this work. In the context of aircraft design loops, it provides a detailed and flexible formulation that can be integrated into a wider simulation methodology for a complete commercial aviation mission. As a matter of fact, conceptual and preliminary aircraft design activities require iterative calculations to quickly make performance predictions on a set of possible airplane configurations. The goal is to search for a design that best fits all top level aircraft requirements among the results of a great number of multi-disciplinary analyses, as fast as possible, and with a certain grade of accuracy. Usually, such a task is carried out using statistical or semi-empirical approaches which can give pretty accurate results in no time. However, those prediction methods may be inappropriate when dealing with innovative aircraft configurations or whenever a higher level of accuracy is necessary. Simulation-based design has become crucial to make the overall process affordable and effective in cases where higher fidelity analyses are required. A common example when flight simulations can be effectively used to support a design loop is given by aircraft mission analyses and performance predictions. These usually include take-off, climb, en route, loiter, approach, and landing simulations. This article introduces the mathematical models of aircraft take-off and landing and gives the details of how they are implemented in the software library JPAD. These features are not present in most of the currently available pieces of preliminary aircraft design software and allow one to perform high fidelity, simulation-based take-off and landing analyses within design iterations. Although much more detailed than classical semi-empirical approaches, the presented methodologies require very limited computational effort. An application of the proposed formulations is introduced in the second part of the article. The example considers the Airbus A220-300 as a reference aircraft model and includes complete take-off and landing performance studies, as well as the simulation of both take-off and landing certification noise trajectories.

2017 ◽  
Vol 89 (4) ◽  
pp. 599-608 ◽  
Author(s):  
Vittorio Trifari ◽  
Manuela Ruocco ◽  
Vincenzo Cusati ◽  
Fabrizio Nicolosi ◽  
Agostino De Marco

Purpose This paper aims to introduce the take-off and landing performance analysis modules of the software library named Java toolchain of Programs for Aircraft Design (JPAD), dedicated to the aircraft preliminary design. An overview of JPAD is also presented. Design/methodology/approach The calculation of the take-off and landing distances has been implemented using a simulation-based approach. This expects to solve an appropriate set of ordinary differential equations, which describes the aircraft equations of motion during all the take-off and landing phases. Tests upon two aircraft models (ATR72 and B747-100B) have been performed to compare the obtained output with the performance data retrieved from the related flight manuals. Findings The tool developed has proven to be very reliable and versatile, as it performs the calculation of the required performance with almost no computational effort and with a good accuracy, providing a less than the 5 per cent difference with respect to the statistical trend and a difference from the flight manual or public brochure data around 10 per cent. Originality/value The use of a simulation-based approach to have a more accurate estimation of the ground performance with respect to classic semi-empirical equations. Although performing the simulation of the aircraft motion, the approach shown is very time-saving and can be easily implemented in an optimization cycle.


2014 ◽  
Vol 598 ◽  
pp. 146-150 ◽  
Author(s):  
Dominik B. Schwinn

Crashworthiness proof is a certification requirement by aviation authorities for new aircraft types. The objective of static design is a sufficiently stiff and strong structure to carry bending and torsion during flight and ground maneuvers. High stiffness, however, is critical for good crashworthiness behavior. Therefore, crashworthiness investigations should be included at early design stages of the overall aircraft design process. This paper introduces the crash analysis tool AC-CRASH and shows an approach of integrating it into the preliminary design phase.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammadreza Yaghoobi ◽  
Krzysztof S. Stopka ◽  
Aaditya Lakshmanan ◽  
Veera Sundararaghavan ◽  
John E. Allison ◽  
...  

AbstractThe PRISMS-Fatigue open-source framework for simulation-based analysis of microstructural influences on fatigue resistance for polycrystalline metals and alloys is presented here. The framework uses the crystal plasticity finite element method as its microstructure analysis tool and provides a highly efficient, scalable, flexible, and easy-to-use ICME community platform. The PRISMS-Fatigue framework is linked to different open-source software to instantiate microstructures, compute the material response, and assess fatigue indicator parameters. The performance of PRISMS-Fatigue is benchmarked against a similar framework implemented using ABAQUS. Results indicate that the multilevel parallelism scheme of PRISMS-Fatigue is more efficient and scalable than ABAQUS for large-scale fatigue simulations. The performance and flexibility of this framework is demonstrated with various examples that assess the driving force for fatigue crack formation of microstructures with different crystallographic textures, grain morphologies, and grain numbers, and under different multiaxial strain states, strain magnitudes, and boundary conditions.


1996 ◽  
Vol 39 (1) ◽  
pp. 14-28 ◽  
Author(s):  
Zhichen Xu ◽  
Xiaodong Zhang ◽  
Lin Sun

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1158
Author(s):  
Giovanna Cavazzini ◽  
Francesco Giacomel ◽  
Alberto Benato ◽  
Francesco Nascimben ◽  
Guido Ardizzon

Scroll compressors are widely adopted machines in both refrigeration systems and heat pumps. However, their efficiency is basically poor and constitutes the main bottleneck for improving the overall system performance. In fact, due to the complex machine fluid dynamics, scroll design is mainly based on theoretical and/or semi-empirical approaches. Designs strategies that do not guarantee an in-depth analysis of the machine behavior can be supplemented with a Computation Fluid Dynamics (CFD) approach. To this purpose, in the present work, the scroll compressor inner fluid dynamics is numerically analyzed in detail using two CFD software and two different modelling strategies for the axial gap. The analysis of the fluid evolution within the scroll wraps reveals unsteady phenomena developing during the suction and discharge phases, amplified by the axial clearance with negative impact on the main fluid flow (e.g., −13% of average mass flow rate for an axial gap of 30 μ) and on the scroll performance (e.g., +26% of average absorbed power for an axial gap of 30 μ). In terms of accuracy, the k-ε offers good performance on the estimation of average quantities but proves to be inadequate for capturing the complexity of the unsteady phenomena caused by the axial gap (e.g., −19% of the absorbed power in case of perfect tip seal). The need for considering specific geometric details in design procedures is highlighted, and guidelines on the choice of the most suitable numerical model are provided depending on the analysis needs.


2019 ◽  
Vol 56 (3) ◽  
pp. 1259-1263 ◽  
Author(s):  
Francesca Tomasella ◽  
Marco Fioriti ◽  
Luca Boggero ◽  
Sabrina Corpino

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5133 ◽  
Author(s):  
Angelo Lerro ◽  
Alberto Brandl ◽  
Manuela Battipede ◽  
Piero Gili

Heterogeneity of the small aircraft category (e.g., small air transport (SAT), urban air mobility (UAM), unmanned aircraft system (UAS)), modern avionic solution (e.g., fly-by-wire (FBW)) and reduced aircraft (A/C) size require more compact, integrated, digital and modular air data system (ADS) able to measure data from the external environment. The MIDAS project, funded in the frame of the Clean Sky 2 program, aims to satisfy those recent requirements with an ADS certified for commercial applications. The main pillar lays on a smart fusion between COTS solutions and analytical sensors (patented technology) for the identification of the aerodynamic angles. The identification involves both flight dynamic relationships and data-driven state observer(s) based on neural techniques, which are deterministic once the training is completed. As this project will bring analytical sensors on board of civil aircraft as part of a redundant system for the very first time, design activities documented in this work have a particular focus on airworthiness certification aspects. At this maturity level, simulated data are used, real flight test data will be used in the next stages. Data collection is described both for the training and test aspects. Training maneuvers are defined aiming to excite all dynamic modes, whereas test maneuvers are collected aiming to validate results independently from the training set and all autopilot configurations. Results demonstrate that an alternate solution is possible enabling significant savings in terms of computational effort and lines of codes but they show, at the same time, that a better training strategy may be beneficial to cope with the new neural network architecture.


2020 ◽  
Vol 96 (3) ◽  
pp. 035301
Author(s):  
N D Ly ◽  
N N Duy ◽  
K Y Chae ◽  
Vinh N T Pham ◽  
T V Nhan-Hao

Sign in / Sign up

Export Citation Format

Share Document