scholarly journals Poplar-Assisted Bioremediation for Recovering a PCB and Heavy-Metal-Contaminated Area

Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 689
Author(s):  
Valeria Ancona ◽  
Ida Rascio ◽  
Giorgia Aimola ◽  
Claudia Campanale ◽  
Paola Grenni ◽  
...  

A Monviso clone has been applied to promote PCB degradation in a soil historically contaminated by polychlorinated biphenyls (PCBs) and heavy metals (HMs). The multi-contaminated area is located in Southern Italy. PCBs, HMs, and the soil microbial community (abundance, viability, and structure) were analysed in selected plots of the poplar-treated area. At 900 days after poplar planting, chemical analyses showed that PCBs and most of HMs diminished under the Italian legal limits. The overall results suggest that the poplar clone was effective in promoting PCB rhizodegradation and HM phytostabilization. Organic carbon content increased strongly in the rhizosphere of the planted plots. Microbiological results highlighted an overall increase in microbial abundance, cell viability, and the presence of bacterial groups involved in PCB degradation. The poplar-based bioremediation technology is a nature-based solution able to promote the recovery of soil quality in terms of contaminant removal, increase in organic carbon, and stimulation of autochthonous bacterial groups able to transform PCBs.

2012 ◽  
Vol 518-523 ◽  
pp. 4701-4706
Author(s):  
Yun Xian Dai ◽  
Jing Hui Liu ◽  
Li Jun Li ◽  
Aodungerile Chen ◽  
Li Gang Wang ◽  
...  

The effects of three different fertilization patterns including single chemical fertilizer(DH), chemical-organic fertilizer(HY), and single organic fertilizer (DY),no fertilizer(CK) on soil microbial biomass, soil organic carbon content, yield and soil respiration flux in ridge cultivation maize fields in the West Liaohe region were studied. The results showed that soil microbial biomass, organic carbon content, yield and soil respiration flux under HY were higher than the rest of other treatments in 2005 and 2006. The varying order of soil microbial total biomass performed as HY>DY>DH>CK on the ridge-tillage maize farmland. The soil total nitrogen concentration, organic carbon concentration and respiration of HY were significantly higher than the rest of other treatments (p HY> DH > CK; the order of biological yield was DH>HY>DY> CK; the order of grain yield was HY>DH>DY> CK and the economic coefficient of HY was the highest in both years.


Author(s):  
Lucian Dinca ◽  
Aurelia Onet ◽  
Alina Dora Samuel ◽  
Roberto Tognetti ◽  
Enno Uhl ◽  
...  

Fagus sylvatica is widely distributed across Europe thanks to its high adaptability in a wide variety of soils and climate. Microbial communities are essential for maintaining forest soil quality and are responsible for forest ecosystem functioning; the ability of soil microorganisms to respond to abiotic stressors (e.g. organic carbon losses, water scarcity, temperature changes), is crucial under ongoing environmental changes and also supports tree health. In this study, soil samples were collected from pure beech plots as part of the COST Action project CLIMO to find differences in microbial community characteristics and evaluate the effects of soil properties on microbial communities across altitude, latitude and longitude gradients. Positive relationships were found between organic carbon content and both microbial abundance and dehydrogenase activity. Dehydrogenase and catalase activities were altitude-correlated and microbial activities were longitude-correlated. In the most southern beech plot, microbial community was abundant and displayed high activities. This shows that microbial communities could help tree populations to better adapt to predicted changes in environmental conditions in the future. We suggest that research into forest health and beech performance should also test soil microbial enzymatic activity, in particular under changing climate conditions, to assist in identifying adaptation strategies.


2017 ◽  
Vol 63 (No. 3) ◽  
pp. 125-130 ◽  
Author(s):  
Ma Yan ◽  
Xu Junzeng ◽  
Wei Qi ◽  
Yang Shihong ◽  
Liao Linxian ◽  
...  

Variation of soil organic carbon (SOC) and its liable fractions under non-flooding irrigation (NFI) were investigated. In NFI paddies, the soil microbial biomass carbon (SMBC) and water extractable organic carbon (SWEC) content in 0–40 cm soil increased by 1.73–21.74% and 1.44–30.63%, and SOC in NFI fields decreased by 0.90–18.14% than in flooding irrigation (FI) fields. As a result, the proportion of SMBC or SWEC to SOC increased remarkably. It is attributed to the different water and aeration conditions between FI and NFI irrigation. The non-flooding water-saving irrigation increased soil microbial activity and mineralization of SOC, which broke down more soil organic nutrients into soluble proportion and is beneficial for soil fertility, but might lead to more CO<sub>2</sub> emission and degradation in carbon sequestration than FI paddies.  


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


2021 ◽  
Vol 24 ◽  
pp. e00367
Author(s):  
Patrick Filippi ◽  
Stephen R. Cattle ◽  
Matthew J. Pringle ◽  
Thomas F.A. Bishop

Sign in / Sign up

Export Citation Format

Share Document