scholarly journals The Phytotoxicity of Microencapsulated Peppermint Oil on Maize (Zea mays L.) Depending on the Type of Growth Substrate and Maize Cultivar

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1302
Author(s):  
Agnieszka Synowiec ◽  
Jan Bocianowski ◽  
Agnieszka Krajewska

Microencapsulated peppermint (Mentha × piperita L.) essential oil (MPEO) is a prospective botanical herbicide. A hypothesis was formulated that the type of growth substrate (vermiculite, silty clay loam or sandy loam soil) and the cultivar affect the phytotoxic potential of MPEO on maize (Zea mays L.). The pot experiments assessed the effect of varying doses of MPEO or maltodextrin, a carrier of microcapsules, mixed with the growth substrates, on maize’s emergence and early growth. The morphological analyses were supported by the measurements of total phenolics in the second leaf and roots. The MPEO revealed phytotoxic effects on maize in all of the growth substrates already at a low dose (36.0 g m−2), displayed by the delays of maize emergence, reduced growth, and biomass accumulation. Maltodextrin also caused significant reductions in biomass of maize roots. In conclusion, maize is susceptible to substrate-applied MPEO, the type of substrate and the cultivar of maize, can modify this effect to a limited extent.

Author(s):  
Mohammed Aajmi Salman ◽  
Jawad A. Kamal Al-Shibani

Beneficial microorganisms play a key role in the availability of ions minerals in the soil and use Randomized Complete Block Desing ( R.C.B.D ). The objective of this paper to the study effect of the of biofertilizer and miniral treatments on availability of NPK for crop corn zea mays L.Two types of biofertilizer are Bacterial Bacillus subtilis and Fungal Trichoderma harianum. Three levels of potassium fertilizer are (2.9533, 0.4000 and 2.9533). A field experiment in fall season of 2018 Has been conducted in silty clay loam soil. The experimental Results indicated that Bacillus and Trichoderma inoculation separately or together Have made a significant effect to increase in the availability of N P K in the soil compare to other treatments. The grain yield is where (2.9533, 0.4000 and 2.9533) of bacterial and fungal bio-fertilizer and potassium fertilizers respectively as compared to the control.


2013 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
Wahyu Astiko ◽  
Ika Rochdjatun Sastrahidayat ◽  
Syamsuddin Djauhari ◽  
Anton Muhibuddin

A glass house study was conducted to evaluate the contribution of indigenous arbuscular mycorrhiza fungi (AMF) in improving maize yield grown on sandy loam of Northern Lombok. The package of organic fertilizers treatments were tested including: without inoculation of mycorrhiza, inoculation mycorrhiza and no added inorganic fertilizers, inoculation of mycorrhiza with cattle manure added, inoculation of mycorrhiza with rock phosphate added and inoculation mycorrhiza with inorganic fertilizers. The treatments were arranged using a Completely Randomized Design with four replications. The results of the study show that the inoculation of AMF significantly increased soil concentration of N, available-P, K and organic-C by 37.39%, 60.79%, 66.66% and 110.15% respectively observed at 60 days after sowing (DAS). The similar trend was also found at 100 DAS, where those nutrients increased by 21.48%, 69%, 43.93% and 37.07%, respectively compared to control. The improving of soil fertility status was also reflected by nutrients uptake (i.e. N, P, K, Ca) as well as growth and yield of maize. N, P, K and Ca uptake increased by 1,608%, 1,121%, 533% and 534%, respectively. Roots and top dry biomass at 60 DAS increased by 718.40% and 337.67%, respectively. The trend increased of the biomass was followed by observation at 100 DAS. Yield components including cobs, grain and weight of 100 grains increased by 313.60%, 411.84% and 137.54%, respectively. In addition, the inoculation of AM with F2 contributed significantly to the spore numbers and root infection.[How to Cite : Astiko W, IR Sastrahidayat, S Djauhari, and A Muhibuddin. 2013. The Role of Indigenous Mycorrhiza in Combination with Cattle Manure in Improving Maize Yield (Zea Mays L) on Sandy Loam of Northern Lombok, Eastern of Indonesia. J Trop Soils, 18 (1): 53-58. doi: 10.5400/jts.2013.18.1.53][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.53]


1988 ◽  
Vol 68 (4) ◽  
pp. 687-693 ◽  
Author(s):  
S. C. MOTT ◽  
J. R. DAVENPORT ◽  
R. L. THOMAS

Although corn (Zea mays L.) stalks contribute to the total quantity of organic material in soil, their direct influence on soil structural stabilization may be small. In a laboratory study 14C-labelled corn stalks were placed on the surface of, or buried at, a 5-cm depth in a sandy loam soil. The soils were incubated at 25 °C for 119 d to determine the extent of organic carbon redistribution. Approximately 70% of the buried stalk carbon and 90% of the surface stalk carbon remained in the soil after incubation. Most of the residual carbon was identifiable as stalk tissue. Less than 5% of the added carbon was intermixed with the soil. Both the lack of C redistribution in the soil and the high loss of the mineralized 14C as CO2 stress the importance of the initial distribution of added organic materials in soils. The results imply that corn stover is a poor source of soil C and that it would be best used as a surface protectant against raindrop impact. Key words: Carbon mineralization, carbon redistribution, corn stalks, soil structure


2010 ◽  
Vol 11 (1) ◽  
pp. 18 ◽  
Author(s):  
H. Arnold Bruns ◽  
Hamed K. Abbas

Aflatoxin research in corn (Zea mays L.) usually requires application of inoculum of Aspergillus flavus to soil or plant ears. The pin-bar vs. side-needle or spray vs. solid material inoculations using A. flavus isolate F3W4 (NRRL 30798) were compared in 2004, 2006, and 2007 using three hybrids in two irrigated experiments each year at Stoneville, MS. Both were planted on a silty clay soil in randomized complete block designs with four replications of treatments. Mature ears inoculated by the pin-bar, side-needle, or spray methods were analyzed for aflatoxin. Ears from controls and solid material inoculum treatments were sampled for analysis at plot harvest. Pin-bar inoculation had more aflatoxin in 2004 (551.9 ng/g) and 2006 (305.8 ng/g) than side-needle inoculation (342.2 ng/g and 151.1 ng/g for 2004 and 2006, respectively), which was greater than controls (76.8 ng/g and 21.6 ng/g for 2004 and 2006, respectively). Solid material inoculation did not differ in aflatoxin from controls. Spraying produced the most aflatoxin (344.1 ng/g) only in 2004. Aflatoxin was low in 2007 when timely rainfall, irrigation, and no temperatures ≥ 35°C resulted in only the pin-bar (20.8 ng/g) and solid material (20.6 ng/g) treatments having > 2.0 ng/g of aflatoxin. Accepted for publication 26 March 2010. Published 1 June 2010.


2013 ◽  
Vol 18 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Wahyu Astiko ◽  
Ika Rochdjatun Sastrahidayat ◽  
Syamsuddin Djauhari ◽  
Anton Muhibuddin

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shishir Tandon ◽  
Suman Lata Pal

Indiscriminate use of pesticides and growing awareness of environmental and health problems had led to monitoring their residues in soil and crops. Ethofumesate is one of the widely used herbicides for controlling weeds in sugar beet. Dissipation kinetics and terminal residues of ethofumesate were investigated in two diverse soils under subtropical field conditions. Ethofumesate dissipated slowly after application and follows biphasic first-order kinetics in soils. The average half-life for initial and later phases in sandy loam soil, respectively, was 14.54 and 20.42 and 51.83 and 65.21 days, while for silty clay loam, it was 10.09 and 13.00 and 71.42 and 73.10 days, respectively. Recoveries in soil, leaves, and beetroot ranged from 78.15 to 88.05, 77.01 to 88.58, and 76.25 to 84.50%, respectively. The quantitation limit for soil, roots, and leaves was 0.002 μg g−1. At harvest, no residues were detected in soils, leaves, and sugar beetroots. Residues were below the maximum residue limits in sugar beetroots and leaves as set by EU (0.2 ppm). Ethofumesate is safe from weed control and environmental aspects as it does not persist for a long duration in soils and does not appear to pose any adverse effect on human/animal health under subtropical field conditions.


2013 ◽  
Vol 1 ◽  
pp. 23-27
Author(s):  
MN Paudel

Improved open pollinated maize (Zea mays L.) varieties exhibit different emergence reaction as a result of either inferior seed quality or affected by agronomic practices of maize planting. To address problem of low emergence percentage of maize varieties, an experiment was laid out in factorial design under two types of soil (red clay and sandy loam), three level of depth of sowing (7, 14 and 21 cm) for Rampur Composite, Manakamana-1 and Arun-2 maize varieties in Rampur, Chitwan for representing main season (May-August). The result of the experiment revealed that emergence count was highly significant for soil types and depth of sowing among the maize varieties tested. Manakamana-1 expressed lowest percentage (20 and 29%) followed by Arun-2 (22 and 33%) and Rampur Composite (24 and 39%) of emergence under red clay and sandy loam soils, respectively. Likewise, emergence count at 10 days after sowing was recorded highly significant for depth of showing indicating that irrespective of varieties higher the planting depth lower the emergence count.. There was a positive relation between depth of planting and length of mesocotyle resulting loss of seed vigor which furnished low emergence of the maize varieties. It is suggested that depth of sowing affect emergence percentage which consequently have effects on plant population maintenance. Hence, it was concluded that sowing below 7cm deep is not feasible for the tested varieties under red clay and sandy loam soils. DOI: http://dx.doi.org/10.3126/ajn.v1i0.7539 Agronomy Journal of Nepal (Agron JN) Vol. 1: 2010 pp.23-27


2013 ◽  
Vol 28 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Jelena Gajic-Umiljendic ◽  
Ljiljana Radivojevic ◽  
Tijana Djordjevic ◽  
Katarina Jovanovic-Radovanov ◽  
Ljiljana Santric ◽  
...  

A bioassay test was conducted to evaluate the sensitivity of maize, sunflower and barley to clomazone residues in sandy loam soil. Clomazone was applied at different rates from 0.12 to 12 mg a.i./kg of soil. The parameters measured 14 days after treatment were: shoot height, fresh and dry weight, and content of pigments (carotenoids, chlorophyll a and chlorophyll b). The results showed that the lowest clomazone concentration caused a significant reduction in all measured parameters for barley and sunflower shoots. Fresh weight of maize shoots was not sensitive to clomazone residual activity in soil while the other parameters were highly inhibited. Nomenclature: clomazone (2-(2-chlorbenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one), maize (Zea mays L.), sunflower (Helianthus annuus L.), barley (Hordeum vulgare L.).


Sign in / Sign up

Export Citation Format

Share Document